

# Time-delay Tolerant Control of an Omnidirectional Multi-agent System for Transport Operations

J. U. Alvarez-Muñoz, J. Escareno, F. Méndez-Barrios, I. Boussaada and S. I. Niculescu

October 12, 2018

**GT-UAV Fall Meeting** 

## Outline

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

Conclusions

## 1 Introduction

2 Modeling and Control Strategy

- 3 Simulation Results
- 4 Conclusions



## Introduction Multi-Agent Systems

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

#### Conclusions

- The problem of synchronization of multiple agents arises in numerous applications, both in natural and in man-made systems.
- Examples from nature include:



Bird flock, fish school and collective transport



## Introduction Context and Main Goal



#### Modeling and Control Strategy

System Modeling Consensus and Time Delay Control Law

Simulation Results

Simulation Results

#### Conclusions





## Introduction Aerogripper concept

#### Introduction

#### Motivation

#### Modeling and Control Strategy

System Modeling Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

#### Conclusions





## Introduction Optimal Grasping Points Identification

#### Introduction

#### Motivation

#### Modeling and Control Strategy

System Modeling Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

#### Conclusions

During grasping or manipulation operations, contacts between the end-effectors and the object depend on different aspects, such as: friction, vector force direction and magnitude.

A reliable contact point between the gripper and the object is considered as optimal if the grabbing force is orthogonal to the object's surface.





## System Modeling Single Agent Modeling

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling

Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

Conclusions

 Time-delay Control of an Omnidirectional Multi-agent System for Transport Operations.

J. U. Alvarez-Muñoz, J. Escareno, F. Méndez-Barrios, I. Boussaada and S. I. Niculescu

22nd IEEE International Conference on System Theory, Control and Computing, Sinaia, Rumania (presented yesterday!)

Time-delay-based PID Control of an Omnidirectional Multi-agent System for Transport Operations J. U. Alvarez-Muñoz, J. Escareno, F. Méndez-Barrios, I. Boussaada and S. I.

J. U. Alvarez-Munoz, J. Escareno, F. Mendez-Barnos, I. Boussaada and S. I. Niculescu

Submitted to 2019 AMERICAN CONTROL CONFERENCE, PHILADELPHIA, USA

A single agent is represented by an holonomic mobile robot evolving within the 2D space, featuring actuated translational and rotational motion.

The translational and rotational dynamics

$$\Sigma_{tra}^{I}: \begin{cases} \dot{\boldsymbol{\xi}} = \boldsymbol{v} \\ \mathbb{M}\dot{\boldsymbol{v}} + mg\boldsymbol{e}_{z} = R\boldsymbol{f}^{B} \end{cases}$$
(1)

$$\Sigma^{B}_{rot}: \begin{cases} \dot{R} = R\Omega^{\times} \\ I\dot{\Omega} + I\Omega \times \Omega = \Gamma \end{cases}$$
(2)

×lim

## System Modeling Single Agent Modeling

### The torques au and forces f, in the body frame B, are given as follows

Considering that the agents are fully actuated, the dynamic equations are

#### Introduction

Motivation

#### Modeling and Control Strategy

#### System Modeling

Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

#### Conclusions

$$\mathbf{f}^{B} = (f_{U}, f_{V}, f_{W})^{T} \boldsymbol{\tau}^{B} = (\tau_{p}, \tau_{q}, \tau_{r})^{T}$$

$$(3)$$

## $M(\boldsymbol{q})\ddot{\boldsymbol{q}} + C(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + \boldsymbol{G}(\boldsymbol{q}) = \boldsymbol{\mathsf{U}}, \tag{4}$

$$M(\boldsymbol{q}) = \begin{bmatrix} \mathbb{M} & 0\\ 0 & \mathbb{I}\mathcal{W}_n \end{bmatrix}; C(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \begin{bmatrix} \mathbb{M} & 0\\ 0 & \dot{\mathcal{W}}_n \dot{\eta} + \mathbb{I}(\mathcal{W}_n \boldsymbol{\eta}) \times (\mathcal{W}_n \boldsymbol{\eta}) \end{bmatrix}$$
(5)

$$\boldsymbol{G}(\boldsymbol{q}) = \begin{bmatrix} mge_z \\ 0 \end{bmatrix}; \boldsymbol{U} = \begin{bmatrix} R\boldsymbol{f}^{\boldsymbol{B}} \\ \boldsymbol{\tau} \end{bmatrix}$$
(6)

and considering the vectors

$$\boldsymbol{q} = (\boldsymbol{\xi}, \boldsymbol{\eta})^T \in \mathbb{R}^6 \tag{7}$$

xlim

## System Modeling Multi-agent Dynamics

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling

Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

#### Conclusions

We restrict the motion profile of the *i*<sup>th</sup> agent to the horizontal plane ( $e_x - e_y$  plane). This renders Eq.(4) into

$$\ddot{\boldsymbol{q}}_{(i)} = \boldsymbol{M}(\boldsymbol{q})^{-1}(\boldsymbol{U}) \tag{8}$$

where

$$M(\boldsymbol{q})_{(i)} = \begin{bmatrix} \mathbb{M}_{2 \times 2} & \mathbf{0} \\ \mathbf{0} & I_{y} \end{bmatrix}; \boldsymbol{U}_{(i)} = \begin{bmatrix} \boldsymbol{R}\boldsymbol{f}^{B}\boldsymbol{\tau}_{\psi} \end{bmatrix}$$
(9)

The corresponding adjacency matrix is

$$\mathcal{A} = [\mathbf{a}_{ij}] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
(10)



Figure: [left] Single agent freebody sketch, [right] Cyclic topology



## Control Strategy Consensus and Time Delay Control Law

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling

Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

#### Conclusions

It is possible to find an input-state linearization

$$\ddot{\boldsymbol{q}}_{(i)} = \boldsymbol{\nu} \tag{11}$$

whose control input can be split as

$$\ddot{\boldsymbol{q}}_{(i)} = \boldsymbol{\nu}_{int_{(i)}} + \boldsymbol{\nu}_{c_{(i)}} \tag{12}$$

The position/trajectory of the geometrical flock's center of mass. Hence, Eq.(13) is

$$\ddot{\boldsymbol{q}}_{(i)} = -\sum_{j=1}^{m} \alpha_{ij} (\boldsymbol{q}_{(i)} - \boldsymbol{q}_{(j)}) - \sum_{j=1}^{m} \beta_{ij} (\dot{\boldsymbol{q}}_{(i)} - \dot{\boldsymbol{q}}_{(j)}) + \ddot{\boldsymbol{q}}_{(j)} + \boldsymbol{\nu}_{\boldsymbol{c}_{(i)}}$$

$$(13)$$

## The model for the multi-agent system considering the time delay

$$\ddot{\boldsymbol{q}}_{(i)}(t) = -\sum_{j=1}^{m} \alpha_{ij}(\boldsymbol{q}_{(i)}(t-\tau_{1_{ij}}) - \boldsymbol{q}_{(j)}(t-\tau_{1_{ij}})) -\sum_{j=1}^{m} \beta_{ij}(\dot{\boldsymbol{q}}_{(i)}(t-\tau_{1_{ij}}) - \dot{\boldsymbol{q}}_{(j)}(t-\tau_{1_{ij}})) + \ddot{\boldsymbol{q}}_{(j)}(t) + \boldsymbol{\nu}_{c_{(i)}}$$
(14)

## Control Strategy Consensus and Time Delay Control Law

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling

Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

Conclusions

After denoting the consensus protocol in terms of error and taking the Laplace transform, one obtains

$$s^{2}E(s) + \Sigma \alpha e^{-\tau_{1_{ij}}s}E(s) + \Sigma \beta s e^{-\tau_{1_{ij}}s}E(s) = 0$$
(15)

Then, the corresponding quasipolynomial function is given by

$$\Delta(\boldsymbol{s},\tau) = \boldsymbol{s}^2 + \alpha \boldsymbol{e}^{-\boldsymbol{s}\tau} + \beta \boldsymbol{s} \boldsymbol{e}^{-\boldsymbol{s}\tau}$$
(16)

where  $\beta \neq 0$ .

For any  $\tau \in \mathbb{R}_+$  there exist a stabilizing pair  $(\alpha, \beta) \in \mathbb{R}^2_+$ .

$$\alpha(\sigma) = (2 - \tau \sigma) \sigma e^{-\sigma \tau}, \qquad (17)$$

$$\beta(\sigma) = (1 - \tau \sigma) \sigma^2 e^{-\sigma \tau}.$$
(18)

Then,  $\Delta$  is asymptotically stable whenever  $0 < \sigma < \frac{1}{\tau}$ . If in addition  $\sigma = \frac{2-\sqrt{2}}{\tau}$ , then such a solution is dominant.

## Control Strategy Multi-agent Formation Control

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling

Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

#### Conclusions

Each agent consists of an attitude and position controllers. Now, considering the state  $q = (\xi, \dot{\xi}, \eta_x, \dot{\eta}_x, \eta_y, \dot{\eta}_y)$  for every agent, the average attitudes and linear positions are

$$\xi_{C} = \frac{1}{N} \sum_{i=1}^{N} \xi_{i} \quad \dot{\xi}_{C} = \frac{1}{N} \sum_{i=1}^{N} \dot{\xi}_{i}$$
(19)

$$\eta_{CM_x} = \frac{1}{N} \sum_{i=1}^{N} \eta_{i_x} \quad \dot{\eta}_{CM_x} = \frac{1}{N} \sum_{i=1}^{N} \dot{\eta}_{i_x}$$
(20)

$$\eta_{CM_y} = \frac{1}{N} \sum_{i=1}^{N} \eta_{i_y} \quad \dot{\eta}_{CM_y} = \frac{1}{N} \sum_{i=1}^{N} \dot{\eta}_{i_y}$$
(21)

Assuming that the agent 1 is the leader, a consensus algorithm to reach an agreement for orientation and position can be given by

$$u_{1\xi} = -\lambda_1 sat(\xi_C^d - \xi_C) - \lambda_2 sat(\dot{\xi}_C^d - \dot{\xi}_C)$$
(22)

$$u_{1x} = -\lambda_3 sat(\eta^d_{CM_x} - \eta_{CM_x}) - \lambda_4 sat(\dot{\eta}^d_{CM_x} - \dot{\eta}_{CM_x})$$
(23)

$$u_{1y} = -\lambda_5 sat(\eta^d_{CM_y} - \eta_{CM_y}) - \lambda_6 sat(\dot{\eta}^d_{CM_y} - \dot{\eta}_{CM_y})$$
(24)

## Control Strategy Multi-agent Formation Control

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling

Consensus and Time Delay Control Law

Simulation Results

Simulation Results

#### Conclusions

Let  $\bigtriangleup$  be a set of relative, desired inter-agent distances, that is

$$\triangle = [\delta_{ij} \in \mathbb{R} | \delta_{ij} > 0; \quad i, j = 1, ..., N, i \neq 0]$$

$$(25)$$

It is possible to extend the consensus algorithms to formation control if the formation is represented by vectors of relative attitudes or linear positions of neighboring agents.

$$\ddot{\boldsymbol{q}}_{(i)} = -\sum a_{ij} \mathcal{K}(\boldsymbol{q}_{(i)} - \boldsymbol{q}_{(j)} - \delta_{ij}) - \sum a_{ij} \mathcal{K}(\dot{\boldsymbol{q}}_{(i)} - \dot{\boldsymbol{q}}_{(j)}) + \ddot{\boldsymbol{q}}_{(j)} + \boldsymbol{\nu}_{c_{(i)}}$$
(26)

with  $K \in \mathbb{R} > 0$ 

Xlim

## Simulation Results Simulation Scenario

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling Consensus and Time Delay Control Law

#### Simulation Results Simulation Results

Conclusions

#### The simulation consists on three stages.

- The robot multi-agent system is initialized at the states given by the Table 1. Then, it is sent to  $p_o = [1 \ 1]^T m$ . Orientation consensus is performed to  $\xi_i^d = (-90^\circ 210^\circ 30^\circ)$ . The contact points are located at  $\eta_1^d = [0.95 \ 0.99]^T m$ ,  $\eta_2^d = [1 \ 1.085]^T m$  and  $\eta_3^d = [1.05 \ 0.99]^T m$ .
- A trajectory tracking consensus is performed between the time 15s and 60s and it is given by  $\eta_{CM_r}^d = 0.5 \sin(0.07t + 1.5)$  and  $\eta_{CM_r}^d = 0.25 \sin(0.1t + 1.27)$ .
- When the object center of mass reaches the desired place, given by  $p_{od} = [2 \ 1.5]^T m$ , the multi-agent system drops the object.



Figure: 3D- Region in the  $\alpha - \beta$  parameter space, for  $\tau \in [0.045, 0.065]$ .



## Simulation Results Simulation Scenario

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling Consensus and Time Delay Control Law

Simulation Results Simulation Results

Conclusions



Figure: 2*d* positions of the three agents during the simulation.(Top) without communication delay, (bottom) with communication delay



# Simulation Results

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling Consensus and Time Delay Control Law

#### Simulation Results Simulation Results

Conclusions



Xlim

# Simulation Results

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling Consensus and Time Delay Control Law

Simulation Results Simulation Results

Conclusions



Xlim

## **Conclusions and Perspectives**

#### Introduction

Motivation

#### Modeling and Control Strategy

System Modeling Consensus and Time Delay Control Law

#### Simulation Results

Simulation Results

#### Conclusions

## Conclusions

- A control methodology is described to stabilize the collective motion (consensus) regarding the transport operations.
- Such a control strategy consists on a time-delay tolerant control law, which guarantees the stabilization of an individual agent.
- Explicit stability regions for a range of delays concerning the proposed quasipolynomial is presented and explained.
- Simulation results show the effectiveness of the proposed multi-agent control methodology for an object transport scenario.
- The simulation allows also to perform a comparison between a time-delay multi-agent system and simple multi-agent system.

### Perspectives

 Explicit presentation and explanation of the object contact points and coordinated object avoidance will be discussed.

# Thank You

