Wind tolerant controller and robust INS/GPS sensor fusion architecture for multirotor UAV

Isabelle Fantoni

Hussein HAMADI Benjamin Lussier Clovis Francis

Lebanese University, Lebanon Scientific Research Center in Engineering

University of Technology of Compiègne, France UMR CNRS 7253 - Heudiasyc Laboratory

Journée GT UAV, Complègne

12 Octobre 2018

Motivation 0000	Quadrotor Dynamics	Control law 000000	Sensor Faults	Results
Outlines				

Quadrotor Dynamics

3 Control law

UAVs Reliability

Failure rate on a conventional aircraft

 S. Reimann, J. Amos, E. Bergquist, J. Cole, J. Phillips, S. Shuster, UAV for Reliability, AEM 4331 -Aerospace Vehicle Design, December 2013.

Motivation ○●○○	Quadrotor Dynamics	Control law	Sensor Faults	Results
Problem f	ormulation			

Wind pertubations on system

- Additional uncertainties
- Induced disturbance forces and moments
- Loss of stability

Motivation ○○●○	Quadrotor Dynamics	Control law	Sensor Faults	Results
Problem	formulation			

Onboard sensors vulnerable to hardware faults

IMU

Barometer

Compass

Motivation ○○○●	Quadrotor Dynamics	Control law	Sensor Faults	Results
Aim of	Our Work			

- Maintaining system performance and stability in the presence of model uncertainties and external perturbations.
- Developing a strategy to cope with sensor faults.

Main Contributions

- Proposition of a nonlinear observer based on super-twisting theory to estimate the wind forces.
- Proposition of new EKF based GPS/INS fusion architecture to detect and isolate faulty sensors and software issues.

Motivation 0000	Quadrotor Dynamics ●○○	Control law	Sensor Faults	Results
Platform				

Quadrotor S500 frame

System's Parameters

Mass m Inertia I_{xx},I_{yy} Inertia I_{zz} Thrust factor K_f Length of the arm / Rotor's Inertia J_r

1.1 kg $2.2 * 10^{-2} Kg.m^{2}$ $5.5 * 10^{-2} Kg.m^{2}$ $2.75 * 10^{-5} Ns^2 / rad^2$ Drag factor K_t 3.6 * 10⁻⁷ Nm/rad² 0.22 m negligible

The thrust and torgue coefficients are provided by the manufacturer (www.dji.com).

Motivation	Quadrotor Dynamics ○●○	Control law	Sensor Faults	Results

State variables and Control inputs

 $O_b: \{O_B, X_B, Y_B, Z_B\} \qquad \text{Bo}$ $O_E: \{O_E, X_E, Y_E, Z_E\} \qquad \text{Eat}$

Body-fixed frame Earth-fixed frame

State Variables

nosition	хv	
	х,у	
altitude	Z	
roll	ϕ	
pitch	θ	
yaw	ψ	
roll velocity	р	
pitch velocity	q	
yaw velocity	r	
Virtual control i	nputs	
Total thrust		u _t
roll torque		$ au_{\phi}$
pitch torque		$ au_ heta$
yaw torque		$ au_\psi$
Real inputs		
motors speeds	(.).	$i = 1$ Λ
motors speeds	ω_i	i = 1,4

Motivation 0000	Quadrotor Dynamics ○○●	Control law	Sensor Faults	Results

NonLinear Model

The Quadrotor's dynamics are written as [5]:

$$\begin{cases} \ddot{x} = (\cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi) * \frac{u_t}{m} \\ \ddot{y} = (\cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi) * \frac{u_t}{m} \\ \ddot{z} = (\cos\phi\cos\theta)\frac{u_t}{m} - g \\ \ddot{\phi} = \frac{l_{yy} - l_{zz}}{l_{xx}}\dot{\theta}\dot{\psi} - \frac{J_r}{l_{xy}}\dot{\theta}\Omega + \frac{1}{l_{xx}}\tau_{\phi} \\ \ddot{\theta} = \frac{l_{zz} - l_{xx}}{l_{yy}}\dot{\phi}\dot{\psi} - \frac{J_r}{l_{yy}}\dot{\phi}\Omega + \frac{1}{l_{yy}}\tau_{\theta} \\ \ddot{\psi} = \frac{l_{xz} - l_{yy}}{l_{zz}}\dot{\phi}\dot{\theta} + \frac{1}{l_{zz}}\tau_{\psi} \end{cases}$$
(1)

The relation between the virtual inputs and the motors speeds:

$$\begin{cases} u_{t} = F_{1} + F_{2} + F_{3} + F_{4} \\ \tau_{\phi} = (F_{4} - F_{2}) * I \\ \tau_{\theta} = (F_{3} - F_{1}) * I \\ \tau_{\psi} = (\tau_{1} + \tau_{3}) - (\tau_{2} + \tau_{4}) \end{cases}$$
(2)

[5] S. Bouabdallah, "Design and Control of Quadrotors With Application to Autonomous Flying," Ph.D thesis, Ecole Polytechnique Federale de Lausanne, 2007.

Motivation	Quadrotor Dynamics	Control law ●○○○○○	Sensor Faults	Results
-				

Generalities

nonlinear system general form

$$x^{(n)} = f(x, \dot{x}, \ddot{x}, ..., x^{(n-1)}, t) + g(x, \dot{x}, \ddot{x}, ..., x^{(n-1)}, t)u + w(t)$$
(3)

- $x^{(n)}$: state vector
- *u* : virtual input vector

- f : modeled dynamics function
- g : control function
- w(t) : unmodeled dynamics

Uncertain functions Boundaries

$$\begin{aligned} |f(\underline{x},t) - \hat{f}(\underline{x},t)| &\leq F(\underline{x},t) \\ |g(\underline{x},t) - \hat{g}(\underline{x},t)| &\leq G(\underline{x},t) \\ w(\underline{x},t) - \hat{w}(\underline{x},t)| &\leq W(\underline{x},t) \\ |\dot{w}(\underline{x},t) - \dot{w}(\underline{x},t)| &\leq \delta(\underline{x},t) \end{aligned}$$
(4)

Motivation	Quadrotor Dynamics	Control law ○●○○○○	Sensor Faults	Results
Sliding	variable			

• Defining the tracking error as :

$$\tilde{x} = x - x_d \tag{5}$$

• Introducing sliding variable :

$$s = \dot{\tilde{x}} + \lambda \tilde{x} \tag{6}$$

Sliding variable properties

$$s\begin{cases} \dot{s} \ contains \ u\\ s \longmapsto 0 \ when \ t \longmapsto +\infty \Rightarrow \tilde{x} \longmapsto 0 \end{cases} (7)$$

Motivation	Quadrotor Dynamics	Control law ○○●○○○	Sensor Faults	Results

Lyapunov function

• Positive definite Lyapunov function :

$$V(t) = \frac{1}{2}s^2 \tag{8}$$

• Control law :

$$u = \frac{1}{\hat{g}}(\hat{u} - k * sign(s))$$

$$\hat{u} = -\hat{f} + \ddot{x}_d + \lambda \tilde{\dot{x}}$$
(9)

Lyapunov condition

$$\dot{V}(t) = s\dot{s} = s(f - \hat{f}) + w(t)s - k|s| \le -\eta|s| < 0$$
 (10)

• To ensure this condition:

Gain
$$k = F + W + \eta$$
(11)

Motivation 0000	Quadrotor Dynamics	Control law ○○○○●○	Sensor Faults	Results
Solutions				

• Chattering

Super-twisting algorithm

$$u(t) = u_1 + u_2 \begin{cases} u_1 = -\alpha_1 |s|^{\tau} \operatorname{sign}(s), & \tau \in]0, \ 0.5] \\ \dot{u}_2 = -\alpha_2 \operatorname{sign}(s) \end{cases}$$
(12)

• Over/under-estimation of F :

$$\begin{aligned} & \textbf{Observer-based controller} \\ & \hat{u} = -\hat{f} - \hat{f}_{wind} + \ddot{x}_d + \lambda \ddot{\dot{x}} \end{aligned} \tag{13} \\ & \dot{V}(t) = s\dot{s} = s(f - \hat{f}) + s(f_{wind} - \hat{f}_{wind}) + w(t) - k|s| \le -\eta|s| \tag{14} \end{aligned}$$

Motivation	Quadrotor Dynamics	Control law ○○○○●	Sensor Faults	Results
Wind est	timation			

$$\begin{cases} \dot{z}_{0} = v_{0} + \frac{u_{t}}{m}u_{x} - K_{p}(\dot{x} - \dot{x}_{d}) \\ v_{0} = -\alpha_{0x}|z_{0} - \sigma|^{2/3}sgn(z_{0} - \sigma) + z_{1} \\ \dot{z}_{1} = v_{1}, \ v_{1} = -\alpha_{1x}|z_{1} - v_{0}|^{1/2}sgn(z_{1} - v_{0}) + z_{2} \\ \dot{z}_{2} = -\alpha_{2x}sgn(z_{2} - v_{1}) \\ \dot{F}_{x} = z_{1} \end{cases}$$
(15)

 J. Davila, L. Fridman, and A. Levant," Second-order sliding-mode observer for mechanical systems," IEEE Transactions on Automatic Control, vol. 50, no. 11, Novembre 2005.

[2] Y. B. Shtessel, I. A. Shkolnikov, and A. Levant, "Smooth second-order sliding modes: Missile guidance application," Automatica, vol. 43, no.8, 2007.

Motivation 0000	Quadrotor Dynamics	Control law	Sensor Faults ●○	Results

Multi-sensor data fusion architecture

Arducopter EK2

Riseborough, Paul. "Application of data fusion to aerial robotics." Proc. of Embedded Linux Conference. 2015.

Motivation 0000	Quadrotor Dynamics	Control law 000000	Sensor Faults ⊙●	Results

Multi-sensor data fusion architecture

Proposed architecture

Simulation - Adaptive Vs observer-based controller

Small wind forces < 1 N

S. Rajappa, C. Masone, and P. Stegagno, "Adaptive super twisting controller for a quadrotor uav," IEEE International Conference on Robotics and Automation (ICRA), pp. 2971–2977,2016.

Simulation - Adaptive Vs observer-based controller

Wind forces \backsim 5-6 N

Motivation	Quadrotor Dynamics	Control law	Sensor Faults	Results
				000000

Experiment - PID Vs observer-based controller

Motivation 0000	Quadrotor Dynamics	Control law 000000	Sensor Faults	Results ○○○●○○

Simulation - Data fusion architecture

Motivation 0000	Quadrotor Dynamics	Control law	Sensor Faults	Results ○○○○●○
Video				

Real flight Test of Observer-based STA Controller Robust to Wind Perturbation for Multirotor UAV

Wind tolerant controller and robust INS/GPS sensor fusion architecture for multirotor UAVn

Isabelle Fantoni

Hussein HAMADI* Benjamin Lussier

Clovis Francis

Thank You

Journée GT UAV, Compiègne 12 Octobre 2018

