Analysis, Configuration Design and Control of an Aerial Cable-Towed System

Julian Erskine^{1,2}, Abdelhamid Chriette^{1,2}, and Stéphane Caro^{2,3}

¹Ecole Centrale de Nantes ²Laboratoire des Science du Numérique de Nantes ³Centre National de la Recherche Scientifique

GT-UAV Presentation

12 octobre 2018

Introduction 0000	Wrench Analysis	Control 00000	Prototype Design 00000	Experiments 000000	Conclusion
Drocont	ation Autlin	<u>_</u>			
Fresent					
1 Inti	roduction				

- 2 Wrench Analysis
- 3 Control
- Prototype Design
- **5** Experiments

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
• 0 00	00000000	00000	00000	000000	000
Our Team					
The Au	thors				

Julian Erskine

- Master Student, ECN (2016-2018)
- PhD Student, ECN (2018-2021)
- Multi-UAV Systems, Parallel Robotics
- Decentralized Control, Swarm Rigidity, Formation Singularities

Abdelhamid Chriette

- Teacher, ECN
- Researcher, LS2N
- Controls, Robotics

Stéphane Caro

- CNRS Researcher, LS2N
- Institute de Recherche Technique Jules Verne
- Cable-Driven Parallel Robots, Parallel Mechanisms

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000					
Our Team					
				I NI .	

Laboratoire des Sciences du Numérique de Nantes

- Robotics, Control, Signal Processing, and Data Science
 - Serial and Parallel Robots
 - Advanced Manufacturing Robots
 - Autonomous Vehicles
 - Interactions with Environment
- Unmanned Aerial Vehicles
 - Parallel Manipulators
 - Novel Applications
 - Swarms

Zhongmou Li

Damien Six

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	000000000	00000	00000	000000	000
UAVs					
A /Ar	onlications				

• Commercial UAVs : 110k in 2017, 450k in 2022 (U.S.A)¹

- Aerial Photography (48%)
- Industrial Inspection (28%)
- Agriculture (17%)
- Other (7%)
- Perception-based tasks
- Developing uses : Construction and logistics
- Connecting quadrotors with cables
 - Long and lightweight
 - Decouple translation and rotation
 - Modular and easily adaptable

https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/Unmanned_ Aircraft_Systems.pdf, 30/07/2018

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	000000000	00000	00000	000000	000
Motivation					
Objectiv	ves				

- Study how ACTS interact with the environment.
 - Configuration Planning
 - ACTS Design
 - Wrench Limits
- Generalize wrench capabilities as function of :
 - Quadrotor type
 - Cable Connectivity
 - Payload
- Scope : Quasi-static quadrotor motion
- Similar to cable-driven parallel robots
 - Cable tension constraints
 - Kinematics
 - Control

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	000000000	00000	00000	000000	000
Motivation					
Objectiv	/es				

- Study how ACTS interact with the environment.
 - Configuration Planning
 - ACTS Design
 - Wrench Limits
- Generalize wrench capabilities as function of :
 - Quadrotor type
 - Cable Connectivity
 - Payload
- Scope : Quasi-static quadrotor motion
- Similar to cable-driven parallel robots
 - Cable tension constraints
 - Kinematics
 - Control

			1		
definitions					
0000	00000000	00000	00000	000000	000
Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion

Dynamics of Platform and Quadrotor

- *n* quadrotors, *m* cables, *d* DOF platform
 - *d* ≤ *m*
 - $n \le m \le 2n$
- Massless, positive tension cables

• $\mathbf{W}\mathbf{t} + m_p \mathbf{g} + \mathbf{w}_e = m_p \ddot{\mathbf{x}}_p$

$$\mathbf{W} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_m \\ \mathbf{b}_1 \times \mathbf{u}_1 & \cdots & \mathbf{b}_m \times \mathbf{u}_m \end{bmatrix}$$
$$\mathbf{t} = [t_1 \cdots t_m]^T$$

- Cable passes through COM
- Actuation : $[f_z, m_x, m_y, m_z]$

•
$$f_i \mathbf{v}_i + m_i \mathbf{g} - t_i \mathbf{u}_i = m_i \ddot{\mathbf{x}}_i$$

Introduction Wrench Analysis Control	Prototype Design	Experiments	Conclusion
0000 0000000 00000	00000	000000	000
definitions			
	•		
I hrust lension and Wrench S	naces		

• Thrust space of *n* quadrotors

$$\mathcal{H} = \left\{ \mathbf{f} \in \mathbb{R}^n : \underline{\mathbf{f}} \le \mathbf{f} \le \overline{\mathbf{f}} \right\}, \qquad \mathbf{f} = [f_1, \cdots, f_n]^T$$
(1)

• Tension space of *m* cables

$$\mathcal{T} = \{ \mathbf{t} \in \mathbb{R}^m : 0 < \underline{\mathbf{t}} \le \mathbf{t} \le \overline{\mathbf{t}} \}, \quad \mathbf{t} = [t_1, \cdots, t_m]^T$$
(2)

• Wrench space in *d* DOF

$$\mathcal{W} = \left\{ \mathbf{w} \in \mathbb{R}^d | \mathbf{w} = \sum_{j=1}^m \alpha_j \Delta t_j \mathbf{w}_j + \mathbf{W} \underline{\mathbf{t}}, \quad 0 \le \alpha_j \le 1 \right\}$$
(3)

J. Erskine

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	00000000	00000	00000	000000	000
Quasi-Static Cases					
Coupled	Tension AC	CTS			

- Two cables (j, k) to a single quadrotor (i)
 - Thrust constraint : $t_j^2 + t_k^2 + 2t_j t_k \left(\mathbf{u}_j^T \mathbf{u}_k \right) - 2m_i \mathbf{g}^T (t_j \mathbf{u}_j + t_k \mathbf{u}_k) + m_i^2 g^2 - f_i^2 = 0$
 - More DOF with fewer quadrotors
 - Intuitively wider range of moments

$$\mathcal{T} = \mathbf{t} \in \mathbb{R}^3 egin{cases} rac{\mathrm{t}_1 \leq t_1 \leq ar{t}_1 \ rac{\mathrm{t}_2 \leq t_2 \leq h_2(t_3,ar{f}_2) \ rac{\mathrm{t}_3 \leq t_3 \leq h_3(t_2,ar{f}_2) \end{cases}$$

J. Erskine

f_y (N)

-50

f_x(N)

m_y (Nm)

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	000000000	00000	00000	000000	000
Dynamic Considerat	ions				
Case St	udv				

Prototype used to validate models :

	f D	\ \ /			
Dynamic Considerat	ions				
0000	00000000	00000	00000	000000	000
Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion

Effect of Dynamics on Wrench Space

Tension Space $\ddot{\mathbf{x}}_{\rho} = [1.5 \ 0 \ 0]^{T}, \quad \ddot{\mathbf{x}}_{\rho} = [0 \ 1.5 \ 0]^{T}, \quad \ddot{\mathbf{x}}_{\rho} = [0 \ 0 \ 1.5]^{T}$

Tension Space

 $\ddot{\mathbf{x}}_{\rho} = [4 \ 0 \ 0]^{T}, \qquad \ddot{\mathbf{x}}_{\rho} = [0 \ 4 \ 0]^{T}, \qquad \ddot{\mathbf{x}}_{\rho} = [0 \ 0 \ 4]^{T}$

Geomet	ric Modelling	g			
Modelling					
0000	00000000	00000	00000	000000	000
Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion

- Virtual <u>PPP</u>SS Mechanism
 - Quadrotor translates in 3D
 - Cable can't support moments
 - Cable is constant length
- Mapping of State X

• Measure
$$\mathbf{x}_p = \vec{OP}$$
, $\mathbf{x}_i = \vec{OO}_i$

• Control $\mathbf{X} = [\mathbf{x}_p, \mathcal{C}]$

•
$$\mathcal{C} = \begin{bmatrix} \phi_1 & \theta_1 & \phi_2 & \theta_2 & \phi_3 & \theta_3 \end{bmatrix}$$

• Required mappings :

•
$$\theta_i = \cos^{-1} \left(\frac{x_{i,z} - x_{p,z}}{l_i} \right)$$

• $\phi_i = atan2 \left(x_{i,y} - x_{p,y}, x_{i,x} - x_{p,x} \right)$
• $\hat{\mathbf{x}}_p = \mathsf{DGM}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$

Loop closure : $\mathbf{x}_i = \mathbf{x}_p + l_i \mathbf{u}_i$

Kinomo	tic Madallin	Υ			
Modelling					
0000	000000000	0000	00000	000000	000
Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion

Kinematic Modelling

• DKM1

• $\dot{\mathbf{x}}_i = \dot{\mathbf{x}}_p + l_i \dot{\mathbf{u}}_i$ • $\dot{\mathbf{X}} = \mathbf{J} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \\ \dot{\mathbf{x}}_3 \end{bmatrix}$

• DKM2

•
$$\ddot{\mathbf{x}}_i = \ddot{\mathbf{x}}_p + l_i \ddot{\mathbf{u}}_i$$

• $\ddot{\mathbf{X}} = \mathbf{J} \begin{bmatrix} \ddot{\mathbf{x}}_1 \\ \ddot{\mathbf{x}}_2 \\ \ddot{\mathbf{x}}_3 \end{bmatrix} + \mathbf{b}$

J and b are defined in the appendix

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	00000000	00000	00000	000000	000
Modelling					
Dynami	ic Modelling				

•
$$\mathbf{f} = [\mathbf{f}_{1}^{T}, \mathbf{f}_{2}^{T}, \mathbf{f}_{3}^{T}]^{T} = IDM(\mathbf{X}, \dot{\mathbf{X}}, \ddot{\mathbf{X}})$$

• Quadrotor dynamics :
 $f_{i}\mathbf{v}_{i} + m_{i}\mathbf{g} - t_{i}\mathbf{u}_{i} = m_{i}\ddot{\mathbf{x}}_{i}$
• Payload dynamics
 $m_{p}\mathbf{g} + \sum_{j=1}^{3} (t_{j}\mathbf{u}_{j}) + \mathbf{w}_{e} = m_{p}\ddot{\mathbf{x}}_{p}$
• Cable link
 $\mathbf{t} = -\mathbf{W}^{-1}(m_{p}\mathbf{g} + \mathbf{w}_{e})$
 $\mathbf{f} = \underbrace{\left(\mathbf{M}_{Q}\mathbf{J}^{-1} + \mathbf{T}_{\dot{\mathbf{x}}_{p}}\right)}_{\mathbf{D}}\ddot{\mathbf{X}} - \underbrace{\mathbf{M}_{Q}\left(\left[\mathbf{g}]_{\mathbf{g}}\right] + \mathbf{J}^{-1}\mathbf{b}\right) - \mathbf{T}_{g}}_{\mathbf{G}}$

 $\boldsymbol{\mathsf{M}}_{\mathcal{Q}},\,\boldsymbol{\mathsf{T}}_{\ddot{x}_{p}},\,\boldsymbol{\mathsf{T}}_{g}$ defined in appendix

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	00000000	00000	00000	000000	000
Control Architecture					
DII	· •	11			

Backstepping Controller

- Outer Loop
 - Choose thrust vectors $\mathbf{X} \to \mathbf{X}^d$
 - $\mathbf{f}^d = \mathbf{D} \left(\ddot{\mathbf{X}}_d + k_D \dot{\mathbf{e}} + k_P \mathbf{e} \right) + \mathbf{G}$
- Inner Loop
 - Control orientations $f_i \mathbf{v}_i \to \mathbf{f}_i^d$

- Quadrotor Dynamics : Translation : $f_i \mathbf{v}_i + m_i \mathbf{g} - t_i \mathbf{u}_i = m_i \ddot{\mathbf{x}}_i$ Rotation : $\mathbf{m}_i - \mathbf{d} \times t_i \mathbf{u}_i = \mathbb{J}_i \dot{\omega}_i + \omega_i \times \mathbb{J}_i \omega_i$
- Fix desired yaw = 0, $\mathbf{R}^d \in \mathbb{R}^3$

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	00000000	00000	00000	000000	000
Simulation Results					
Simulat	ion Results				

OL rate = 30 Hz, Noise = $\pm 1mm$, $\pm 1^{\circ}$ GT2-UAV

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	000000000	00000	00000	000000	000
System Design					
Quadro	tors				

- Quadrotor Hardware :
 - m = 1050g
 - $\overline{f} = 18N$
 - Pixhawk Flight Control Unit
 - Accelerometer
 - Gyroscope
 - Magnemometer
 - Raspberry Pi Computer
- Quadrotor Software
 - RPi Ubuntu 16.04
 - Pixhawk NuttX (RTOS)

System Design	Conturo				
0000 System Design	00000000	00000	00000	000000	000
Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion

- QUALYSIS System
 - 8 Cameras
 - Passive IR markers
 - Imm Accuracy
 - 100 250 Hz
 - 150*Hz* chosen
 - Latency : 5*ms*
 - 6DOF Pose
 - Quadrotors + Payload

J. Erskine

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	000000000	00000	0000	000000	000
Takeoff/Landing					
Non-Re	presentative	Models			

- Takeoff/Landing Problems :
 - Actuation Singularity
 - $t_i \ge 0N$
- Solution : Virtual ACTS
 - $\hat{\mathbf{x}}_p = DGM(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$
 - $\mathcal{C} = \mathcal{C}(\hat{\mathbf{x}}_p, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$
 - While $\hat{\mathbf{x}}_p \neq \mathbf{x}_p$, $m_p = 0$

- Trigonometric trajectories
 - Quick to test
 - Easily differentiable
 - Future : 5th order splines
- RMS position error $\approx 0.08 \text{m}$
 - $\approx +0.05$ m bias along z_0
 - +1% mass error

Introduction		Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
					00000	
Configuration Desig	ţn					
14/ 1	•	· · ·				

Wrench Analysis

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	00000000	00000	00000	00000	000
Configuration Design	1				
Wrench	Analysis - \	/ideo			

0000 Configuration Design	00000000	00000	00000	000000	000
Wrench	Analysis - F	Results			

- $\theta_{min} = 35^o$ due to colisions
- Wrench limit validation
 - ACTS limit : 2.15 kg
 - $\gamma = 0$ accurately predicts lose of controllability
 - γ does not affect accuracy
- θ^d not exactly symmetric
 (±5°)

Mass	(kg)	1.15	1.35	1.65	1.85	2.05	2.15
$\bar{\gamma}$	(N)	3.7	2.8	1.6	1.0	0.5	0.25
$\theta(\gamma = 0)$	(deg)	71	67	58	51	40	34
θ_{crash}	(deg)	70	65	60	55	50	35
Error	(deg)	1	2	-2	-4	10	-1

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	000000000	00000	00000	000000	000
Dynamic Testing					
Dynamic	Trajectory	- Video			

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	00000000	00000	00000	00000	000
Dynamic Testing					
Dynamic	Trajactory	Poculto			

- $m_p = 0.65 \text{ kg}$
- Increase $||\ddot{\mathbf{x}}_{p}^{d}||$ until crash
- All configurations crashed between $||\ddot{\mathbf{x}}_{p}^{d}|| = 0.8 \text{ ms}^{-2}$ and $||\ddot{\mathbf{x}}_{p}^{d}|| = 1.1 \text{ ms}^{-2}$
- Within wrench capabilities of the ACTS
- Possibly unstable internal dynamics

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion		
0000	000000000	00000	00000	000000	000		
Future Works							
Future Work							

- Current Prototype
 - Dynamic wrench analysis
 - Adaptive gain controller
 - Add redundancy
- Real World Deployment
 - Teleoperation $\rightarrow \dot{\mathbf{x}}_{p}^{d}$,
 - Internal C measurements

Manipulation Tasks

- $\mathbf{w}_{e}(t) \neq \mathsf{constant}$
- Coupled cable design
- Robotic end effector

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion		
0000	000000000	00000	00000	000000	000		
Future Works							
Future Work							

• Current Prototype

- Dynamic wrench analysis
- Adaptive gain controller
- Add redundancy

• Real World Deployment

- Teleoperation $ightarrow \dot{\mathbf{x}}^d_{p}, \mathcal{C}^d$
- Internal ${\mathcal C}$ measurements

Manipulation Tasks

- $\mathbf{w}_{e}(t)
 eq$ constant
- Coupled cable design
- Robotic end effector

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion		
0000	00000000	00000	00000	000000	000		
Future Works							
Future Work							

Current Prototype

- Dynamic wrench analysis
- Adaptive gain controller
- Add redundancy

Real World Deployment

- Teleoperation $\rightarrow \dot{\mathbf{x}}_{p}^{d}, \mathbf{C}$
- Internal C measurements

Manipulation Tasks

- $\mathbf{w}_{e}(t) \neq \text{constant}$
- Coupled cable design
- Robotic end effector

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	00000000	00000	00000	000000	000
Conclusion					
Summary	/				

Work Completed :

- Formulate a general task space wrench analysis method
- Developed dynamic controller for a 3-Quadrotor ACTS
- Built and tested a prototype with comparable accuracy to other labs
- Validated configuration limits calculated through wrench analysis

Project Evolution :

Introduction	Wrench Analysis	Control	Prototype Design	Experiments	Conclusion
0000	00000000	00000	00000	000000	000
End of Presentation					
Thank `	You				

Contact : julian.erskine@ls2n.fr

Matrices

Matrices

$$\mathbf{f} = \underbrace{\left(\mathbf{M}_{Q}\mathbf{J}^{-1} + \mathbf{T}_{\tilde{x}_{p}}\right)}_{\mathbf{D}} \ddot{\mathbf{X}} - \underbrace{\mathbf{M}_{Q}\left(\begin{bmatrix}\mathbf{g}\\\mathbf{g}\\\mathbf{g}\end{bmatrix} + \mathbf{J}^{-1}\mathbf{b}\right) - \mathbf{T}_{g}}_{\mathbf{G}}$$
$$\mathbf{M}_{Q} = \begin{bmatrix} m_{1}\mathbb{I}_{3} & \mathbf{0}_{3\times 3} & \mathbf{0}_{3\times 3} \\ \mathbf{0}_{3\times 3} & m_{2}\mathbb{I}_{3} & \mathbf{0}_{3\times 3} \\ \mathbf{0}_{3\times 3} & \mathbf{0}_{3\times 3} & m_{3}\mathbb{I}_{3} \end{bmatrix}$$
$$\mathbf{T}_{\tilde{x}_{p}} = m_{p} \begin{bmatrix} \mathbf{u}_{1}i\mathbf{W}^{-1}, & \mathbf{0}_{3\times 6} \\ \mathbf{u}_{2}j\mathbf{W}^{-1}, & \mathbf{0}_{3\times 6} \\ \mathbf{u}_{3}k\mathbf{W}^{-1}, & \mathbf{0}_{3\times 6} \end{bmatrix}$$
$$\mathbf{T}_{g} = \begin{bmatrix} \mathbf{u}_{1}i\mathbf{W}^{-1}(m_{p}\mathbf{g} + \mathbf{w}_{e}) \\ \mathbf{u}_{2}j\mathbf{W}^{-1}(m_{p}\mathbf{g} + \mathbf{w}_{e}) \\ \mathbf{u}_{3}k\mathbf{W}^{-1}(m_{p}\mathbf{g} + \mathbf{w}_{e}) \end{bmatrix}$$
$$\mathbf{i} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \mathbf{j} = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix}, \text{ and } \mathbf{k} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}.$$

Support Slides

Identification

Quadrotors

- Controller Thrust : $f \in \mathbb{R}$
- PX4 Thrust : n = [0 1] (Saturated at 0.9)
- Need mapping $f \rightarrow n$
 - Determine actual thrust : R_if_iz₀ = m_iR_ix_{i,imu}
 - Empirical : n = af + bV + c

Simulation

- $\boldsymbol{\mathsf{A}}$: Outer Control Loop
- ${\bf B}$: Delays and Rate Change
- ${\bf C}$: Attitude Control Loop
- ${\bm D}: {\sf Plant} \ {\sf Model}$
- E : Check Real Tensions

Support Slides Overview

Existing Controllers

• Differential Flatness : $\mathbf{X} = [\mathbf{x}_p, t_2\mathbf{u}_2, t_3\mathbf{u}_3]$

- $\mathbf{X} = [\mathbf{x}_p, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]$
- Only simulations

Support Slides \bigcirc

Overview

Blank Slide

