Drone swarms for precision agriculture

Vito Trianni Institute of Cognitive Sciences and Technologies, CNR, Italy vito.trianni@istc.cnr.it

Why swarms?

- Parallelise operations → higher efficiency
- Collaborative action → higher accuracy
- Redundant systems → higher robustness
- Decentralised algorithms → higher scalability

SAGA in a nutshell

Hardware enables: communication among UAVs high-level control and onboard vision

> **Swarm-level control:** collaborative weed mapping decentralised UAV deployment

Onboard vision enables: Iow-altitude weed classification high-altitude density estimation

Hardware

Aerial Curiosity

2x Real Cortex M4 real-time cores

Raspberry Pi 3 Compute module

8M Pixel CSI camera

Optical Flow position sensor

Standard GNSS **GPS** receiver

Dual IMU & magnetometer

25 min flight time

+ UWB: indoor positioning + ZigBee: swarm communication

Onboard Vision

カッコ

赤方

見四骨手の

中国の

ラテゴ派の方っ

かう強いいな

なんが 小子

大学ないない

記事がない、ない

うう、たち 学んな

読む

- Ste

「「「「

ゆりや ややねね

17

*

九月一日

-

1

日本町雨田町の

and the second s

and the first

.

* • •

*

r.

Classification with YOLO

⁽Redmon et al. 2018)

altitude: 3m

Classification with YOLO

⁽Redmon et al. 2018)

altitude: 3m

Faster RCNN

t₀

Collaborative Weed Mapping

Collaborative Weed Mapping

- Full coverage of a cultivated field to inspect for weeds
- Collaboratively map weed presence minimising classification errors
- Deal with UAVs seamlessly entering/leaving an area
- Aim at robustness, efficiency and scalability
- Adapt to environmental heterogeneities
- Avoid collisions with other UAVs
- Proposed solution: reinforced random walks (RRW)

Albani, D., Nardi, D., & Trianni, V. (2017). Field Coverage and Weed Mapping by UAV Swarms Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017), Vancouver, Canada, Sept. 2017

RRW for coverage and mapping Isolated agents perform a correlated random walk m a Random selection among those cells that are closer and not yet visited 3 5 Preferential choice of cells in the motion direction lacksquare(gaussian decay with distance, width σ_A) 3 3 Agents are attracted towards areas of interest (gaussian decay with distance, width σ_B) 3

- Neighbour agents repel each other

RRW for coverage and mapping Isolated agents perform a correlated random walk

- - Random selection among those cells that are closer and not yet visited
 - Preferential choice of cells in the motion direction lacksquare
- Neighbour agents repel each other (gaussian decay with distance, width σ_A)
- Agents are attracted towards areas of interest (gaussian decay with distance, width σ_B)
- Resultant vector determining
 - Direction of bias
 - Persistence of the correlated random walk

RRW for field coverage/mapping

Mapping error goes down from 20% to 5%

Coverage

64

3r

4	- 2989 - 2977 _	2964 2975 ×	2994 2976 &	2945 2935	2947 2936 っ	2852 2839
4 0	- 2989 - 2977	2964 2975	2994 2976	2945 2935	2947 2936	2852 2839
4	- 2989	2964	2994	2945	2947	2852
8	- 2962	2933	2931	2937	2974	2875
16	- 2892	2888	2809	2905	2964	2867
32	- 2729	2741	2758	2809	2888	2893
64	- 2694	2755	2726	2775	2775	2879
	0	\triangleright	ଚ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v	64
0	- 2889	2860	2848	2865	2825	2694
4	- 2894	2849	2877	2895	2833	2694
8	- 2823	2824	2823	2849	2830	2725
16	- 2681	2660	2757	2730	2840	2718
32	- 2591	2546	2509	2500	2734	2737
	- 2519	2522	2521	2507	2484	2723
64						

 Onboard vision and autonomous control allow for non-uniform coverage

- Onboard vision and autonomous control allow for non-uniform coverage
- High-altitude estimation of weed density

- Onboard vision and autonomous control allow for non-uniform coverage
- High-altitude estimation of weed density
- Low-altitude collaborative weed mapping

- Onboard vision and autonomous control allow for non-uniform coverage
- High-altitude estimation of weed density
- Low-altitude collaborative weed mapping
- Attention should be focused only to those areas that contain weed patches

1				
1				
1				
1				
1				
1				
ľ				
1				
1				
	_			
			_	
	+			
	•			
	•			
	•			
	•			
	•			

- Onboard vision and autonomous control allow for **non-uniform coverage**
- High-altitude estimation of weed density
- Low-altitude collaborative weed mapping
- Attention should be focused only to those areas that contain weed patches
- The problem translates to utility-dependent UAV deployment

Collective decision

- There are less UAVs than the • UAVs are in excess with respect optimal number for a single area to the optimal number
- Collaboration improves mapping Area utilities do not vary efficiency considerably

Identify a deployment strategy that can be easily tuned

Decentralised UAV Deployment

Task allocation VS

> Determine optimal number of UAVs given the mapping dynamics

$$\delta = 3E-6, \xi = 4E-8 \quad \rightarrow \quad n^* = 5$$

UAV Deployment Strategy

- UAVs explore and estimate the utility of areas during high-altitude/low-resolution inspection
- UAVs form a wireless communication network and **recruit** other UAVs to areas of high utility
- UAVs are inhibited from monitoring a certain area when
 - other areas of high utility need attention (cross-inhibition among UAVs deployed to different areas)
 - there are too many teammates (self-inhibition among UAVs deployed to the same area)

UAVs prioritise low-altitude/high-resolution inspection for high-utility areas

uncommitted:

- high-altitude inspection
- estimate area utility

deployment:

- spontaneous (utility-driven)
- interactive (recruitment)

- interactive (inhibition)
- spontaneous (mapping completed)

abandonment:

С

deployed to an area: low-altitude mapping recruit/inhibit teammates

Decentralised Deployment Model spontaneous inhibition abandonment M $\dot{x}_i = \gamma_i x_u - \alpha_i x_i + \rho_i x_u x_i - \sum_{i=1}^{m} x_j \beta_{ji} x_i, \qquad x_u = 1 - \sum_{i=1}^{m} x_i$ j=1recruitment 1.0 ODEs 0.8 Parameterisation choice Multi-agent 0.6 $\propto h u_i$ x_i,u_i $\propto h u_i$ 0.4 0.2 (γ_i, ho_i) 0.0 100 150 200 250 50 300

$$\begin{aligned} \gamma_i \propto k u_i & \rho_i \\ \alpha_i = 0 \text{ unless } u_i \approx 0 & \beta_{ij,i \neq j} \\ \beta_{ii} = f(e^{-i \lambda_i}) \end{aligned}$$

Reina, A., Marshall, J. A. R., Trianni, V., & Bose, T. (2017). Model of the best-of-N nest-site selection process in honeybees. Physical Review E, 95(5), 052411–15.

Time [s]

Decentralised Deployment Model spontaneous inhibition abandonment $\dot{x}_i = \gamma_i x_u - \alpha_i x_i + \rho_i x_u x_i - \sum_{i=1}^{M} x_j \beta_{ji} x_i, \qquad x_u = 1 - \sum_{i=1}^{M} x_i$ j=1

Parameterisation choice

$$\begin{aligned} \gamma_i \propto k u_i & \rho_i \\ \alpha_i = 0 \text{ unless } u_i \approx 0 & \beta_{ij,i \neq j} \\ \beta_{ii} = f(e^{-i \lambda_i}) \end{aligned}$$

Reina, A., Marshall, J. A. R., Trianni, V., & Bose, T. (2017). Model of the best-of-N nest-site selection process in honeybees. Physical Review E, 95(5), 052411–15.

recruitment

 $\propto h u_i$

 $\propto h u_i$

 $(\gamma_i,
ho_i)$

We study the ratio r=h/kbetween interactive and spontaneous transitions

n_i

- Decentralised deployment and re-deployment provides
 - ability to focus only on areas of high interest
 - ability to enforce utility-responsive strategies
- The proposed strategy can be tuned by a single parameter • Utility-proportional deployment (r = 0)• Winner-takes-all deployment $(r \ge 1, N \le n^{\star})$

- Utility-responsive deployment $(r \ge 1, N > n^{\star})$ lacksquare
- Strategy tested with UAV simulations
 - Spatial distribution of agents over areas influences deployment
 - Communication range must be sufficiently high

Results Achieved

Summing up

- Collaborative field monitoring and mapping provides
 - parallel operation (efficiency) and collaboration (accuracy)
 - robustness and scalability: group size can vary in real time
- Decentralised deployment and re-deployment provides
 - ability to focus only on areas of high interest
 - ability to enforce utility-responsive strategies

Thanks for your attention