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Two puzzling questions

Quadrotor:
@ 2CW, 2 CCW props
@ (7b, Jbs Eb) body axes

Newton’s law for usual model
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Triaxial accelero located at C

-

a= \70 — g (in body axes)
This implies & = Lkp, hence
(ax;ay) = (a7, a- Jb) = (0,0)
What is accelero feedback good for?
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Usual approximation: a8 ~ —g, hence
(ax,ay) ~ (gsing, —gsin ¢ cos )
Meaning of the approximation?
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Revisited quadrotor model
o

Single propeller

@ angular velocity ew around axis Ky
w>0,e =+1(CCW/CW)

@ V, linear velocity of prop center A
e  angular velocity of “rotor plane” L ke

Aerodynamic efforts “near” hovering
ﬁ = —aWZEb — w(/\1 \_/;J\' = )\gﬁ X Eb) + ew (/\3 \7,4 X Eb = /\4§?2J')

I\7’ = fbswzl_('b — w(m \7}# T ,ugﬁ X Eb) — Ew (Mg \7,4 X Eb a4 ;L4§_21)

a, b, A\, Ao, A3, \a, i1, 1o, 35 114 posmve constants
projection on rotor plane UL := kp x (U X kb) U- (U kb)k

Classical blade element theory, with two extra simplifications:
@ higher-order linear and angular velocity terms neglected

@ linear and angular accelerations neglected



Revisited quadrotor model
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Motion equations (dimension 13)

Complete quadrotor:

@ quadrotor B = frame By - 14
+ 4 x (prop + motor) B; Ve=90+ EZ i
@ 2 CW, 2 CCW props . =i
® (b, Jb, kp) body axes ('?g _ Z qu_ » *i n *’_

gyro: €




Revisited quadrotor model
oeo

with some simplifications (near hovering and mostly rigid prop)
4
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Revisited quadrotor model
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Linearized model splits into four independent subsystems:

@ longitudinal (input Iy := D712, states u, 0, g, wq == wy — w3)
u=-gb—fiu (longitudinal velocity)
=gq (pitch angle)

q = fawg + hu — 3q (pitch rate)
wg =g — fwg (prop difference)

Measurements ay = —fijuand g, = q
@ lateral (input 'y — I, states v, ¢, p, ws — wo)
e vertical (input %, T;, states w, >"%_,w;)
e heading (input 3%_,&,T;, states ¢, r, % ejw))

AN dpio Apso 2ale 2bo
(Fr.fo.fou o f) o= (=00, =1, =25, 222 =)
,



Experimental validation
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Experimental setup: home-built “Quadricopter” + radio data link

@ “true” Earth velocity Vi, V), V; and orientation ¢m, Om, ¥m
given by MIDG2 “GPS-aided Inertial Navigation System”

@ raw accelero data axm, aym also given by MIDG2

@ quadrotor flown in back and forth translations for 1 minute

@ seek to validate force model only (because of low
throughput of radio data link)

Processing of flight data

o filter all the data with 5-order Bessel @ 2Hz, which
preserves the transfer functions

@ compensate data for MIDG2 misalignement ¢g, g, 1o
@ compute “true” body velocities u, v, w

@ compute aligned accelero measurements ay, ay




Experimental validation
oeo

Validation of force model

With (}7, b0, 00,%0) = (4s,1.2°, —2.4° 2°) good fit between:
@ “true” body velocity u
@ “accelerometer-based” velocity —af—f
@ velocity uy “predicted” by model from “true” pitch angle ¢

Velocity (m/s)




Experimental validation
ooe

Invalidation of no-acceleration assumption & ~ —g
ax ~ gsinf 777

@ more or less ok in average... because quadrotor stabilized
by other means

@ very wrong transients!
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Implications on control schemes
[ ]

Importance of coefficients wrt “full-state” feedback?

u= —99 = f1U
0=q Mg =
q = fawg + U — fq qr = kyu + kol — kyuy (outer loop)

After fast inner loop:
u= —f1 u— g9
6=q

eq = 1&g + O(e)

eivg = —Koq — fakaglq + KpQr + O(€)|  Reasonable settling time
= f; dominated by feedback

After slow outer loop:
u=—-fu— go
é = (k1 — f1k2)U — gk20 —Kkyu

Singular perturbations (g 1= cwq)
= fp, f3, f5 dominated by feedback

Conclusion: if u (and g) measured, revisited state model not usefuI!J




Implications on control schemes
°

Slow control model

Outer loop (with “angle estimator”)

A

L.I:_geiﬁu qr = k(0 — 0)
0~ for controller 2 "
. o | . ) 9:q+/(§—9)
0 =q (for estimator) g

Usual interpretation Revisited interpretation

ax = gf = closed-loop ax = —fu = closed-loop polynomial
polynomial s(s+k)(s+/) A=t (k+!+1)s%+Ff(k+ s+ fik
L ~(s+K)(S2+fis+fil) with | < k
s+ k _
. _gk , ~(s+h)(s+k)(s+!) withl<f
sSHOT L Ksth)sHD, Kk,
With k, /> 0, N A " Tstk '
(u,0,0) — (0, 0, 0r) —gk(s+1) —gk
u = T@f ~ ﬁar
Not quite consistent with (s+f)(s+k)
experience! With k, />0, (u,6,8) — (—£6y,6:,6,)




Implications on control schemes
L]

Improve performance with controller based on revisited model

Performance of usual control scheme limited by time constant }1
= better performance with eg “revisited controller-observer”

N A fi k
qr = —kil — kot + <k1 _%)Ur

U=—fit1— g0+ h(ax + f 1)
0=gy+ b(ax+ f0)

Step response
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