

Integrated Coastal Zone Management via Increased Situational Awareness through Innovations on Unmanned Aircraft Systems

3i European Project Presentation

10 Avril 2014 GT UAV, ENSAM

Benoît Huard, Benoît Clément, Olivier Reynet

OSM: Ocean Sensing and Mapping

- Staff:
 - 25 permanent people
 - 8 PhD Students
 - 4 Post doc

- Facilities
 - A robotic hall
 - A water tank
 - 2 vessels

OSM activities - 1/4

Sonar Systems

- Global approach of the sonar processing chain...
- from the sensor design to the high-level information extraction

- Beam forming, synthetic aperture& new sonar technology
- Design of multi-purpose "low cost" sonars
- Obstacle detection and avoidance
- Acoustic positioning and communication
- Image registration and matching

OSM activities - 2/4

Hydrography
 Oceanography

Research activity tightly linked to education (20 to 30 hydrographers A cat. per year)

- Improving accuracy of underwater terrain model (ex. CHARM algorithm)
- Underwater sensor characterization
- Optimization algorithms

OSM activities – 3/4

Information fusion

- Knowledge of the underwater environment relies on : acquisition, processing and combination of information from sensors of different types
- Classification/fusion algorithm
- Automatic recognition of man made objects
- Seabed characterization
- Using Dempster-Shafer theory of evidence

OSM activities - 4/4

Robotics

- Improving navigation using interval arithmetic
- Participating to student contest in underwater robotics
- Control/command strategy and navigation for groups (swarm) of robots
- Design and study of underwater (AUV, Glider) and surface (sailing boat, electric boat) robots

Robotics: Research topics

- Surface and underwater autonomous marine robotics (USV and UAV)
- Groups of robots (swarm)
- Improving Navigation, Control, Localization with
 - Interval Analysis Methods
 - Robust Control

Description of 3i project

- 1. Project outline
- 2. UAV application examples
- 3. Project partners
- 4. 3i UAV System
- 5. Progress status
- 6. ENSTA-Bretagne contribution

1. Project outline

- Police, harbors and environmental organizations interested in monitoring the activities of vessels
- Increased need to collect data for the maritime safety partners
- Unlikely to be achieved using conventional systems (radar, automatic beacons and 'manned' aircraft)
 - Limited range
 - Cost structures

1. Project outline

- New, cost effective and reliable monitoring service thanks to UAV's
 - Remotely piloted aircraft
 - Autonomous systems
- Primary mission for the UAV: information gathering using optical sensors
- Demonstrator realization

2. UAV application examples

- Main port fire
- Environmental pollution or chemical spill monitoring
- Locating missing persons at sea
- Other objects at sea, like lost cargo
- Identification and tracking of small high speed boats entering harbour at night
- Escort of "critical ships" (like cruise ships) in the harbour.
- Monitoring anchorage in the vicinity of the harbour
- Illegal fishing
- Illegal diving near protected wreckages
- Small, high-speed vehicles cross the Channel illegal

3. Project partners

PP	Partner name	Member State	Region/NUTS III
LP	Delft University of Technology	The Netherlands	Delft en Westland
2	ROC West Brabant - Aircraft Maintenance and Training school	The Netherlands	West-Noord-Brabant
3	Digital & Media Solutions	The Netherlands	West-Noord-Brabant
4	Ensta Bretagne	France	Finistère
5	Kent Police	England	Kent CC
6	Politie Rotterdam Rijnmond	The Netherlands	Groot-Rijnmond
7	Technopôle Brest-Iroise	France	Finistère
8	Havenbedrijf Rotterdam NV	The Netherlands	Groot-Rijnmond
9	Rewin	The Netherlands	West-Noord-Brabant
10	Deev Interaction SAS	France	Finistère
11	Institut Telecom / Telecom Bretagne	France	Finistère
12	University of Southampton	England	Southampton

4. 3i UAV System

5. Progress status

- Van conception
- Demonstration (date to be confirmed)
 - UK, 17th July
 - France, 1st week,
 September
 - Netherlands, 3rd week,
 September

5. Progress status

IHM demonstration

Flight demonstration

2SEAS-20 UAV Test Flights, Port of Ramsgate, February 2014 -...

6. ENSTA-Bretagne contribution

- Main objective: improve UAV control
 - Proportional (sometimes Proportional and Integral)
 controllers
 - Advanced (and robust) control wanted: LQG, H_{inf}, LPV...
- Implicit objectives
 - Development of an aircraft simulator
 - Data filtering improvement
 - Interaction with 3i project team (data, sensors, integration with paparazzi platform...)

6. ENSTA-Bretagne contribution

Controller synthesis principle

Application/validation

Experimental validation

- Frame definition
 - Body axes
 - Stability axes
 - Wind axes

12 states (kinetic and kinematic)

$$\mathbf{X}_{1} = \begin{bmatrix} V_{T} \\ \alpha \\ \beta \\ P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \text{total speed} \\ \text{angle of attack} \\ \text{sideslip angle} \\ \text{roll rate} \\ \text{pitch rate} \\ \text{yaw rate} \end{bmatrix} \qquad \mathbf{X}_{2} = \begin{bmatrix} X_{E} \\ Y_{E} \\ Z_{E} \\ \Phi \\ \Theta \\ \Psi \end{bmatrix} = \begin{bmatrix} \text{Earth fixed x-position} \\ \text{Earth fixed z-position} \\ \text{Foll angle} \\ \text{pitch angle} \\ \text{yaw angle} \end{bmatrix}$$

- Generalized state vector: $\mathbf{X} = [\mathbf{X}_1 | \mathbf{X}_2]^T$
- Kinetic equations deduction by Newton's second law

- Nonlinear state-space expression dX/dt=f(X,U)
 - Input vector: $\mathbf{U} = [\mathsf{T} \ \delta \mathsf{C}_{\mathsf{X}} \ \delta \mathsf{C}_{\mathsf{Y}} \ \delta \mathsf{C}_{\mathsf{Z}} \ \delta \mathsf{C}_{\mathsf{I}} \ \delta \mathsf{C}_{\mathsf{m}} \ \delta \mathsf{C}_{\mathsf{n}}]^{\mathsf{T}}$
 - Propeller thrust
 - Aerodynamic coefficient variations

First results

- Probable cause
 - Aerodynamic coefficient misunderstanding
 - Parameter sensitivity

Integrated Coastal Zone Management via Increased Situational Awareness through Innovations on Unmanned Aircraft Systems

Thank you for your attention!

