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0 Introduction: mathematical framework

o Locomotion model

m Applications to bio-inspired (swimming, flying, creeping)



In general locomotion is based on the action-reaction principle

reaction DH
BODY WORLD

HD action

!

e Fluid: underwater / aerial

(
 Endo skeleton : vertebrates
e Solid : terrestrial locomotion

A —

« Exo skeleton : arthropodes {
: » EXxotic media...

e Soft bodies : mollusques...

\ e V0|d
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Here we model the animal or robot as a mobile multibody system (MMS)

:> And ask two general questions:

( - - -
A theoretical one : « How can we classify the locomotion models? »

A practical one : « How efficiently compute these models ? »
\

Before to try to answer... definition of a MMS
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Definition of a Mobile Multi Body System...

Joint (shape) a
(r,r,,.ry) =r<—| motions -

f \ / \:

Coordinates on
a manifold

(9,N0GXS —0

’

@ Net rigid N L // \
motions _— / |

g _ ‘\ ///

S A \ / g

- _ f
/ Tranformation | Reference body
of a Lie groupG P4

Configuration _ o
space From this definition...
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ECCLE DES HMIHES OE HAMTES

What is a manifold...?

It's a set of points whose relative positions are known from coordinates charts...

A

longitude

v

W
"‘w-._
B
i

o f N i
latitude

Sphere: M =S°
(longitude, latitude) = (4.¢)
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In mechanics, the motion of a MS is a point moving on a Manifold

Example of the double pendulum...

Picture =
Configuration
In Physical space

]
 e— |

4

Position of
one point
moving on the
2D torus

Physical space Configuration space : M =S'x S

GT-UAV 7



What is a Lie group...?

Starting from an example: the rigid (reference) body...

Physical space

Configuration space
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General problem of locomotion dynamics...

:> 19 Knowing the joint motions (gaits when they are c yclic, transient maneuvers...)

E> 2°) To compute:

.
» the net rigid motions : (forward) « locomotion dynamics »

* the joint torques : (inverse) « torque dynamics »

\
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To solve this pb : General dynamic algorithm for locomotion

Geometric integrators on G

Inputs: A
I (r.rr)e)
Joint motions v
. Blockl: g-
Block2: Joint < Locomotion
torque Dynamics | 'L Dynamics
> Joint Torques T(t) 2 v v
\ Acc. Velocity Config. |
Rigid net motions (g,77,7)(t)
Outputs
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ECCLE DES HMIHES OE HAMTES

|:> Why this choice, why not take the joint torques as inputs?

More intuitive, ... can be coupled to biological experiments based on films...

|:> Another relevent problem for locomaotion:

The inverse locomotion problem:

shape
motion l
|:> Locomotion
dynamics
net
motion

Find the joint motions ensuring a given net motion...

GT-UAV
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Forward locomotion dynamics

— ) \
-
( &
‘Y T
S
r(t) |
P \ wyrs
NE— - AT
S MLy,
N % . / q \
- 1% N a
N w \ | /\
i » ‘ \ o ) / \

Inputs:

Internal motions

(r,F,FX1)

Block2: Torque

Dynamics
L (joints)

(Reference Body) |

Blockl:
Locomotion
Model

— Internal Torques (Y

™~

|

\ Acc. Velocity Config. J

-

Reference body motion (g.17, 7)) "

Outputs "7

Blockl:

Joint Imposed
P — Locomotion —_—

motions

A8

Model

GT-UAV

Net rigid
acceleration
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On the « principal fiber bundle » of configurations, we seek the link ...

Fiber =

Lie group of net G Base
displacements — (@) Manifold =

Shape space

7N (ont) ) \\
\\?w’:(‘// ’ ) - \\ L \ //,/,,/ ““ r (t ) / ”’7”“

N r(t)
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The most simple way of relating S and G : define a connexion, i.e.:

Linear relation between small displacementon S and G
Displacements in G independent of J (left invariance)

:> (9, )0H,,,¢ 0T, ¢ = n+A(r) =0

Local connexion

H(gir)g
9 ‘ —> Horizontal space
g . Hun€
n
1 |
|
r o S
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In a more general way...

A connection associates univoqually an fiber element over a point (of the
base manifold) to another element of the fiber over a point infinitesimally

close...
G G /
g(r“‘)v/ g(r +dr)
S
r r +dr

Fiber bundle= Gx S

T.M T .M

/

i = V(x+ dR

M

X X+ dXx

=)

Fiber bundle = Tangent bundle TM
of a manifold M

|:> Example: Parallel transport on a Riemannian manifold ... |:> @ Levi-Civita

GT-UAV
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... Integrating @ along a closed loop...

A cyclic change of shape

iyt

A net displacement in G
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0 Introduction: mathematical framework

o Locomotion model

m Applications to bio-inspired (swimming, flying, creeping)



The locomotion model is generally a dynamic model which can

degenerate into kinematics, when we have a linear relation :

n+Ar)yY =0

!

e Defines a connexion on G X S [Ehresmann,1950]
* Encodes the model of all reaction forces

In bio-inspired robotics there are two well known cases where locomotion
Is modelled by a connexion...
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First case: conservation law (ex. falling cat...)

og=0,,+0,=R(JQ+ai)=0
ay
Q=-(J"a)(r)r
a
A(r)=37(r)a(r)

Mechanical connexion
[Marsden 78, Montgomery 93]

Remark: Applying the same idea to
translations of the reference frame...

Satellite with rotors | Falling cat

EMN, IRCCyN
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ECCLE DES HMIHES OE HAMTES

Second case: snakes in lateral undulation

n=-ACY =

Non-Holonomic

Platform

= .A(r): Principal kinematic connexion [Kelly & Murray, 95]

GT-UAV
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* First case where F_, requires no physics : when the contacts are ideal i.e. defined

by kinematic constraints ...

|:> This is the case of (Wheeled) Mobile Multi-body Systems (MMS) [Boyer&Ali, 11] :

S sd

“Hirose ACM-R5”

GT-UAV EMN, IRCCyN 22




This MMS is a serial assembly of passive wheeled axels connected by active joints...

i $ Reproduces the principle of
Snake creeping:
E> Body undulations

G = SH?2) i1

7] Lateral reaction forces

4

“ACMechanism” _
Axial resultant

Gathering all the constraint equations on GX S :

= A(Np+B(nr=0
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“ A(r)n + B(r)f =0 plays a crucial role in wheeled MMS classification...

—)> 2 cases depending upon rank(A)/3

e Case 1 (fully constrained): rank(A =3 =) Block partition of constraints...

~3
+
S

|

ex: selection of <— A(r) B(r) . 0} (1)
@

3 axels (i,j, k) A(r))'” 50 , 0,

Principal kinematic connection:

@ = 7 =—=A(r)"B(r)f ==A4(r) < | encodes the constraints of the wheels
[Ostrowsky & Burdick,1999]

@ —) compatibility conditions

—) Allows to compute the other joint motions which preserve mobility...
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e Case 2 (under constrained): rank( A) <3

—) The MMS has not enough constraints to be governed by kinematics only!

Generalized Inversion of (*) =) n=H(r)n +JI(r)r

H_/
||

OKer(A) -A'B
Where: /], kinematically undetermined!

—) Todetermine /). =) we need dynamics...
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ECCLE DES HMIHES OE HAMTES

Remark : Ker(A) = space of net velocities with r locked!

C> Dynamics are required if the system can move with its shape locked...

Example: the snake board

Other example: Singular configurations of ACM... —>

GT-UAV EMN, IRCCyN



Projection of the unconstrained dynamics in Ker(A:

:> (”rj_( M—lFr ) Mr :HTMH
.| . , with: < . :
g g(Hr, + Ji) F =HT(F-A/(Hn, +Jt +JF))
|

% + |:inert

Contains all the sub cases:

-

Casel: Pure Kinematic case
(Snake robot)

Case2: Mixed Kinematic and
Dynamic case (Snakeboard)

Case3: Pure dynamic case (fish
robot)

H=0,J=-4%0

Hz0, J#0,J=0)

H=1,J=0

TR

T

//%\\///
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In the general case, a dynamic model is required...

. . 1, . (M m
To get it, take the Lagrangian: 1(g,r,7,r)=—=@ 1 )
2 m M

—> Poincaré equations [Poincaré, 1901]:

d( ol . Ol
—|—|-ad,| — |= F
= dt(anj ”(0/7]

—) Locomotion dynamics in state space :

» locked inertia tensor

— (”]:(M_llzj‘ = Fext + Finert : locked forces
\9 a7

B reconstruction eq. from /7 to g

GT-UAV EMN, IRCCyN 29



ECCLE DES HMIHES OE HAMTES

In general, F,, requires to solve the contact dynamics of the system / world ...

|:> Which can be extremly difficult...

For example in swimming, F_. requires to solve Navier-Stokes equations!

xt

However, there exists some simple situations where F__only requires geometry

(no physics)... =) two cases...
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e Snd case: when F

ext

is Lagrangian [Birkhoff, 66], i.e. when there exists |_.(r,7,r') ...

Locomotion dynamics:
R e rad al
e dtl o an = < d(a(|+|ext)]_ad*[a(| +|exgj:
But then... dt 07 Loy

ifat t=0, Ol +1ex) =0 —) Ol +ey) =0 , Ut | : Locomotion dynamics:
on on

Swimming at high Reynolds in a quiescent potential flow: Tensor of virtual inertia
= solid+ added

ext qu|d :> | +| ——(/7 r'T)(

> Conservation law of kinetic momentum: ./1/1/7 +Mi=0 = n+.A4(r) =

Mechanical connection: encodes kinetic exchanges body / fluid...[Kanso, 2005, 09...]
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Remarks:

19 Can change the orientation but also the position

29  Acyclic change of one dof shape :> no phase shift on G

39 similar context at low Reynolds with viscous forces...

GT-UAV EMN, IRCCyN

Theorem of Scallop ...
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:> At high Reynolds, kinetic conservation laws can be prolonged to the case with
vorticity... applying the balance of impulses wrench [Saffmann, 92] gives:

1
(pshj_i_[prf j+ jGBXX(nX ua)) da+§JF > w dv | [Oj

3 =
%) % 1 1 0
" " ——j IX|” (nxu,) da——j | 4w dv
\ O 2708 2JF ) N
Y Starting at rest
Impulse wrench due to
vorticity

|:> Animals generate (and control) vortices to move efficiently!

:> A scallop escapes from its theorem...
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|:> Generate vorticity for what?

» To manoeuver (turn, plung...) in the case of fishes

More generally...

<= QC s 7v

Hbds

» To generate lift (used for sustentation, thrust...) against drag:

|:> Remind the basic picture of lift generation in steady aerodynamics...

& E

O\

Mﬂwﬁ gt ol

— N
s

GT-UAV

Shed vorticity
a

bound vorticity

= il

circulation

4
lift!
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ECOLE DE5S HMIMES DE MAMTES
N g
- 78
» Wake energy recovering: @4 5 —>
— §9
- >
= O 9
— )
= >
* Flow energy recovering : =2 @ 9 G&gﬁ, vidéo
o ° 0 [JFM (subm.) 11]
*’ 22
~ @ 5 —_—
- S
=5 —

GT-UAV
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:> Exemple of the flapping wing

Understand the mechanisms

Put them in the Poincaré equations

4
Mmoo m
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-— -
-— -
-—
-— E 5
-— —
-— —
-—

 —
B —_—
g [R—
- —
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vidéo

vidéo

I:> ‘ Effets Stationnaires |

‘ Modéle Aérodynamique ‘

Cysta = 1.92

Cpeta =175

— 1.55 cos 2a

sin2e

| Effets instationnaires ‘

‘ Circulation rotationn

elle ‘

Masse ajoutée

3 1 bd .
o (s [ =—c?yp—0
I, = wac (4 c) m 40 YF .
B :pVafF s Py :pVabl",ln
Ca ot = 2T sine —dc(c — =) C. :Esina— Vel
v, 4 c mas 2 Vaz F
1 3 1
Cz,.or:Z'lrcosa—dc(ffi) C _r sa’ic’é
vy 4 ¢ zmas = 5 Ve YF
a

I |

+ Cx mas)

1
Portance:L = EpSTEfVRZ (Cysta + Cxror

1
Trainée: D = 2 pSreVe (Cosvat Coror

+ Czmas)

|:f
+ Qfa:
Q ¢

|:> Modelling the contact forces

0
Ta
0

EMN, IRCCyN
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I:> Exemple of the anguilliform swimming [TRO 08, JNLS 10, JFM 11]

L.A.E.B.T. [Lighthill, 1970] IZ> Mechanism of kinetic energy amplification |:>

19 Control-volume 2 = oote radius hemisphere boun ded by caudal plane 77

2°) a kinetic balance of the fluid in 20

d (1 1
Te+lg=-—[ my} dx{ my Vit mf\/}
X;=1

| |

Thrust Shed impulse

: Shed
" Self propell the fish body < kinetic energy
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C> Exemple of the Snake creeping [TRO 11, TRO 12]

» External dynamics...

M :

When the total number of independent constraints = 6 IZ> ﬁﬁﬁﬂﬁéﬂr—&gﬁ%

|:> Locomotion entirely ruled by kinematics of contact and controlled strains

= f(9,, fd,fd i) <:> Forward locomotion kinematics

* Internal dynamics...
(0(0c)__ ~(09£), 0 (oL)_
ot\ an "\ on ) ox\|a&

0L) = g :ET _AT(5_
K (a—fl—iF With: €= =4 =" A =N (= &,(0)

0§
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dT (agj _ I—: Poincaré equations
— - |~ —>
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Questions ...7?



