Locomotion Dynamics Modeling (Application to bioinspired robotics)

Authors: F. Boyer
Laboratory: IRCCyN
Venu: ENSAM (Paris)
Date: 10.11. 2011

(I) Introduction: mathematical framework
(II) Locomotion model
III) Applications to bio-inspired (swimming, flying, creeping)

In general locomotion is based on the action-reaction principle

Here we model the animal or robot as a mobile multibody system (MMS)
\Rightarrow And ask two general questions:

A theoretical one : «How can we classify the locomotion models? »

A practical one : «How efficiently compute these models? »

Before to try to answer... definition of a MMS

Definition of a Mobile Multi Body System...

What is a manifold...?

It's a set of points whose relative positions are known from coordinates charts...

$$
\text { Sphere : } M=S^{2}
$$

$$
(\text { longitude, latitude })=(\varphi, \psi)
$$

In mechanics, the motion of a MS is a point moving on a Manifold
Example of the double pendulum...

What is a Lie group...?

Starting from an example: the rigid (reference) body...

General problem of locomotion dynamics...

19 Knowing the joint motions (gaits when they are c yclic, transient maneuvers...)
2°) To compute:

- the net rigid motions : (forward) «locomotion dynamics»
- the joint torques : (inverse) « torque dynamics »

To solve this pb : General dynamic algorithm for locomotion

Why this choice, why not take the joint torques as inputs?

More intuitive, ... can be coupled to biological experiments based on films...

\Rightarrow Another relevent problem for locomotion:

The inverse locomotion problem: Find the joint motions ensuring a given net motion...

Forward locomotion dynamics

On the «principal fiber bundle» of configurations, we seek the link ...

The most simple way of relating S and G : define a connexion, i.e.:
Linear relation between small displacement on S and G
Displacements in G independent of g (left invariance)

In a more general way...
A connection associates univoqually an fiber element over a point (of the base manifold) to another element of the fiber over a point infinitesimally close...

Fiber bundle $=G \times S$

Fiber bundle $=$ Tangent bundle $T M$ of a manifold M

Example: Parallel transport on a Riemannian manifold \square ω : Levi-Civita connection
\ldots integrating ω along a closed loop...

$$
\theta=\int_{\text {loop }} \omega=\int_{\text {area }} d \omega
$$

A cyclic change of shape

A net displacement in G
(I) Introduction: mathematical framework
(II) Locomotion model
III) Applications to bio-inspired (swimming, flying, creeping)

The locomotion model is generally a dynamic model which can degenerate into kinematics, when we have a linear relation :

- Defines a connexion on $G \times S$ [Ehresmann,1950]
- Encodes the model of all reaction forces

In bio-inspired robotics there are two well known cases where locomotion is modelled by a connexion...

First case: conservation law (ex. falling cat...)

$$
\sigma=\sigma_{r e f}+\sigma_{s h}=R(J \Omega+\alpha \dot{r})=0
$$

$$
\begin{gathered}
\frac{\Omega}{\Omega=-\left(J^{-1} \alpha\right)(r) \dot{r}} \\
\Omega \\
\mathcal{A}(r)=J^{-1}(r) \alpha(r)
\end{gathered}
$$

Mechanical connexion [Marsden 78, Montgomery 93]

Remark: Applying the same idea to translations of the reference frame...

$$
\Rightarrow \mathcal{A}(r)=0
$$

Second case: snakes in lateral undulation

$\square \mathcal{A}(r)$: Principal kinematic connexion [Kelly \& Murray, 95]

- First case where $F_{\text {ext }}$ requires no physics : when the contacts are ideal i.e. defined by kinematic constraints ...
\square This is the case of (wheeled) Mobile Multi-body Systems (MMS) [Boyer\&Ali, 11] :

"Hirose ACM-R5"

This MMS is a serial assembly of passive wheeled axels connected by active joints...

Gathering all the constraint equations on $G \times S$:

$$
\begin{equation*}
\Rightarrow \quad A(r) \eta+B(r) \dot{r}=0 \tag{*}
\end{equation*}
$$

" $A(r) \eta+B(r) \dot{r}=0$ " plays a crucial role in wheeled MMS classification...
$\square 2$ cases depending upon $\operatorname{rank}(A) / 3$

- Case 1 (fully constrained): $\operatorname{rank}(A)=3 \Rightarrow$ Block partition of constraints...

ex: selection of
3 axels (i, j, k)

$\binom{\bar{A}(r)}{\tilde{A}(r)} \eta+\binom{\bar{B}(r)}{\tilde{B}(r)} \dot{r}=\binom{0}{0} \rightarrow(2)$
(1) $\Rightarrow \eta=-\bar{A}(r)^{-1} \bar{B}(r) \dot{r}=-\mathcal{A}(r) \dot{r}\left\{\begin{array}{c}\begin{array}{c}\text { Principal kinematic connection: } \\ \text { encodes the constraints of the wheels } \\ \text { [Ostrowsky \& Burdick, 1999] }\end{array} \\ \hline\end{array}\right.$
(2) \Rightarrow compatibility conditions
\Rightarrow Allows to compute the other joint motions which preserve mobility...

- Case 2 (under constrained): $\operatorname{rank}(A)<3$

\Rightarrow
The MMS has not enough constraints to be governed by kinematics only!

Generalized Inversion of (*) $\begin{aligned} \Rightarrow \eta & =\underbrace{H(r) \eta_{r}}+\begin{array}{c}J(r) \dot{r} \\ \| \\ -A^{\dagger} B\end{array} \\ & \in \operatorname{Ker}(A)\end{aligned}$

Where: η_{r} kinematically undetermined!
\Rightarrow To determine $\eta_{r} \Rightarrow$ we need dynamics...

Remark: $\operatorname{Ker}(A)=$ space of net velocities with r locked!
\square Dynamics are required if the system can move with its shape locked...

Example: the snake board

Other example: Singular configurations of ACM...

Projection of the unconstrained dynamics in $\operatorname{Ker}(A)$:

$$
\begin{aligned}
& \Rightarrow\binom{\dot{\eta}_{r}}{\dot{g}}=\binom{\mathcal{M}_{r}^{-1} F_{r}}{g\left(H \eta_{r}+J \dot{r}\right)}, \text { with: }\left\{\begin{array}{l}
\mathcal{M}_{r}=H^{T} \mathcal{M} H \\
F_{r}=H^{T}\left(F-\mathcal{M}\left(\dot{H} \eta_{r}+\dot{J} \dot{r}+J \dot{r}\right)\right)
\end{array}\right. \\
& \text { Contains all the sub cases: }
\end{aligned}
$$

Case1: Pure Kinematic case (Snake robot)	Case2: Mixed Kinematic and Dynamic case (Snakeboard)	Case3: Pure dynamic case (fish robot)
$H=0, J=-\mathcal{A} \neq 0$	$H \neq 0,(J \neq 0, J=0)$	$H=1, J=0$

In the general case, a dynamic model is required...
To get it, take the Lagrangian: $l(g, r, \eta, \dot{r})=\frac{1}{2}\left(\eta^{T}, \dot{r}^{T}\right)\left(\begin{array}{ll}\mathcal{M} & m \\ m^{T} & M\end{array}\right)\binom{\eta}{\dot{r}}-U(g, r)$
\Longrightarrow Poincaré equations [Poincaré, 1901]:

$$
\Longleftrightarrow \quad \frac{d}{d t}\left(\frac{\partial l}{\partial \eta}\right)-a d_{\eta}^{*}\left(\frac{\partial l}{\partial \eta}\right)=F_{e x t}
$$

\Rightarrow Locomotion dynamics in state space :
$\leadsto\binom{\dot{\eta}}{\dot{g}}=\binom{\mathcal{M}^{-1} F}{g \eta} \quad \begin{aligned} & \text { locked inertia tensor } \\ & \\ & \text { reconstruction eq. from } \eta \text { to } g\end{aligned}$

In general, $F_{\text {ext }}$ requires to solve the contact dynamics of the system / world ...

Which can be extremly difficult...

For example in swimming, $F_{\text {ext }}$ requires to solve Navier-Stokes equations!

However, there exists some simple situations where $F_{e x t}$ only requires geometry (no physics)... \square two cases...

- Snd case: when $F_{e x t}$ is Lagrangian [Birkhoff, 66], i.e. when there exists $l_{e x t}(r, \eta, \dot{r}) \ldots$

$$
\text { if at } t=0, \frac{\partial\left(l+l_{e x t}\right)}{\partial \eta}=0 \quad \Longleftrightarrow \quad \frac{\partial\left(l+l_{e x t}\right)}{\partial \eta}=0, \forall t \quad: \text { Locomotion dynamics: }
$$

Swimming at high Reynolds in a quiescent potential flow:
Tensor of virtual inertia = solid+ added

$$
l_{\text {ext }}=T_{\text {fluid }} \Rightarrow l+l_{\text {ext }}=\frac{1}{2}\left(\eta^{T}, \dot{r}^{T}\right)\left(\begin{array}{cc}
\tilde{M} & \tilde{m} \\
\tilde{m}^{T} & \tilde{M}
\end{array}\right)\binom{\eta}{\dot{r}}
$$

Conservation law of kinetic momentum: $\tilde{\mathcal{M}} \eta+\tilde{m} \dot{r}=0 \Longleftrightarrow \eta+\tilde{\mathcal{A}}(r) \dot{r}=0$
Mechanical connection: encodes kinetic exchanges body / fluid...[Kanso, 2005, 09...]

Remarks:

19 Can change the orientation but also the position
29 A cyclic change of one dof shape \square no phase shift on G

Theorem of Scallop ...

39) similar context at low Reynolds with viscous forces...

At high Reynolds, kinetic conservation laws can be prolonged to the case with vorticity... applying the balance of impulses wrench [Saffmann, 92] gives:

$$
\{\binom{p_{s h}}{\sigma_{s h}}+\binom{p_{r f}}{\sigma_{r f}}+\underbrace{\binom{\int_{\partial B} x \times\left(n \times u_{\omega}\right) d a+\frac{1}{2} \int_{F} x \times \omega d v}{-\frac{1}{2} \int_{\partial B}\|x\|^{2}\left(n \times u_{\omega}\right) d a-\frac{1}{2} \int_{F}\|x\|^{2} \omega d v}}_{\begin{array}{c}
\text { Impulse wrench due to } \\
\text { vorticity }
\end{array}}=\binom{0}{0}
$$

\Rightarrow
Animals generate (and control) vortices to move efficiently!A scallop escapes from its theorem...

\square Generate vorticity for what?

- To manoeuver (turn, plung...) in the case of fishes

More generally...

- To generate lift (used for sustentation, thrust...) against drag:
\square
Remind the basic picture of lift generation in steady aerodynamics...

- Wake energy recovering:

- Flow energy recovering :

vidéo
[JFM (subm.) 11]
(I) Introduction: mathematical framework

II Locomotion model
III) Applications to bio-inspired (swimming, flying, creeping)

\square Exemple of the flapping wing

Understand the mechanisms

A

D $\underset{\sim}{ \pm}$

B

E $\underset{\rightrightarrows}{\rightrightarrows}$

vidéo
vidéo

Put them in the Poincaré equations \Rightarrow Modelling the contact forces
\square

$$
\left(\begin{array}{ccc}
\mathcal{M} & m_{a} & m_{e} \\
m_{a}^{T} & M_{a a} & M_{a e} \\
m_{e}^{T} & M_{e a} & M_{e e}
\end{array}\right) \cdot\left(\begin{array}{l}
\eta \\
\ddot{r}_{a} \\
\ddot{r}_{e}
\end{array}\right)+\left(\begin{array}{c}
F_{i n} \\
Q_{a, i n} \\
Q_{e, i n}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
K_{e e}\left(r_{e}\right) r_{e}
\end{array}\right)+\left(\begin{array}{c}
F_{f} \\
Q_{f a} \\
Q_{f e}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\tau_{a} \\
0
\end{array}\right)
$$

\Rightarrow Exemple of the anguilliform swimming [TRO 08, JNLS 10, JFM 11]
L.A.E.B.T. [Lighthill, 1970] \Rightarrow Mechanism of kinetic energy amplification \Rightarrow

19 Control-volume $\mathcal{D}=\infty$ te radius hemisphere boun ded by caudal plane π

2°) a kinetic balance of the fluid in \mathcal{D}

Exemple of the Snake creeping [TRO 11, TRO 12]

- External dynamics...

When the total number of independent constraints $\geq 6 \Rightarrow$

\Rightarrow Locomotion entirely ruled by kinematics of contact and controlled strains

$$
\eta_{o}=f\left(g_{o}, \dot{\xi}_{d}, \xi_{d}, \xi_{d}^{\prime}, \xi_{d}^{\prime \prime}, \ldots\right) \Leftrightarrow \text { Forward locomotion kinematics }
$$

- Internal dynamics...

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left(\frac{\partial \mathfrak{L}}{\partial \eta}\right)-a d_{\eta}^{T}\left(\frac{\partial \mathfrak{L}}{\partial \eta}\right)+\frac{\partial}{\partial X}\left(\frac{\partial \mathfrak{L}}{\partial \xi}\right)-a d_{\xi}^{T}\left(\frac{\partial \mathfrak{L}}{\partial \xi}\right)=\bar{F} \rightarrow \begin{array}{l}
\text { Poincaré equations } \\
\text { of a Cosserat-beam }
\end{array} \\
\left(\frac{\partial \mathfrak{L}}{\partial \xi}\right)_{ \pm}= \pm \bar{F}_{ \pm} \quad \text { With: } \mathfrak{L}=\mathfrak{T}-\mathfrak{U}=\frac{1}{2} \eta^{T} \mathcal{M} \eta-\Lambda^{T}\left(\xi-\xi_{d}(t)\right)
\end{array}\right.
$$

Questions ...?

