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BODY                                        WORLD
reaction

action

In general locomotion is based on the action-reaction principle
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action

• Endo skeleton : vertebrates

• Exo skeleton : arthropodes

• Soft bodies : mollusques…

• Fluid: underwater / aerial

• Solid : terrestrial locomotion

• Exotic media…

• Void
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And ask two general questions:

A theoretical one : « How can we classify the locomotion models? »

Here we model the animal or robot as a mobile multibody system (MMS)
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A practical one    : « How efficiently compute these models ? »
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Before to try to answer…  definition of a MMS



Definition of a Mobile Multi Body System…

Joint (shape) 
motions1 2( , ,.. )TNr r r r=

Coordinates on 
a manifold

( , )g r G S∈ ×
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Reference body

Net rigid 
motions

g

Tranformation 
of a Lie group
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( , )g r G S∈ ×

S

G

Configuration 
space

r

( , )g r

G

From this definition… 



What is a manifold…?

It’s a set of points whose relative positions are known from coordinates charts…

longitude
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Sphere :  
(longitude, latitude) =      

2M S= 1 1M S S= ×Torus : 
( , )ϕ ψ

θ

φ
 ( , )θ φlatitude
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In mechanics, the motion of a MS is a point moving on a Manifold

Example of the double pendulum…

Picture =
Configuration 

In Physical space
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1 1M S S= ×Configuration space : 

1θ

2θ

Physical space 

Position of
one point

moving on the 
2D torus

1 2( , )r θ θ=

1θ

2θ
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What is a Lie group…?

Starting from an example: the rigid (reference) body…

(3)G SE=

1

( )g t
1 ( )g g tη− =ɺ

η
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1

( )g t

1

g

Physical space 
Configuration space 

( )g tɺ

ɺ

( 0)g t =
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General problem of locomotion dynamics…

1°)  Knowing the joint motions (gaits when they are c yclic, transient maneuvers…)

2°) To compute: 
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2°) To compute: 

• the net rigid motions : (forward) « locomotion dynamics »

• the joint torques : (inverse) « torque dynamics »
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To solve this pb : General dynamic algorithm for locomotion

Inputs:

Joint motions
( , , )( )r r r tɺ ɺɺ

Geometric integrators on 

ηɺ

G
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Outputs

Acc. Velocity Config.
Joint Torques

Block2: Joint 

torque Dynamics

Block1: 

Locomotion 

Dynamics 

Rigid net motions

( )tτ

( , , )( )g tη ηɺ

gηηɺ
∫ ∫
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Why this choice, why not take the joint torques as inputs?

More intuitive, … can be coupled to biological experiments based on films…

shape 
motion
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Another relevent problem for locomotion:

The inverse locomotion problem:
Find the joint motions ensuring a given net motion…
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motion

net 
motion

Locomotion 
dynamics



Forward locomotion dynamics

( )r t
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Block1: 

Locomotion 

Model

Joint Imposed
motions

Net rigid 
acceleration

MMS

( )tη( )g t
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On the « principal fiber bundle » of configurations, we seek the link …

Fiber =
Lie group of net 
displacements

Base
Manifold = 

Shape space

?

G

G

G

2(,)()grt

(,)()grt( , )( )g r t

( , )( )fg r t
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( )r t

( )tη( )g t

?

1()rt

2()rt

()rt

1(,)()grt

(,)()grt S

( )ir t

( )r t

( )fr t
( , )( )ig r t

( , )( )g r t
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Displacements in   independent of (left invariance)

( ) 0r rη + =ɺA( , ) ( , )( , ) g r g rg r H T∈ ⊂ɺ ɺ C C

Linear relation between small displacement on and S G

G g

The most simple way of relating     and     : define a connexion, i.e.:S G
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G

S

1( ,r )H C

( g ,r )H C

r rɺɺɺɺ

gɺɺɺɺ

ξ̂

( )h
gX rɺɺɺɺ

( )h
eX rɺɺɺɺ

g

1 eλ

gλ

Local connexion

Horizontal space

η
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In a more general way…

A connection associates univoqually an fiber element over a point (of the 
base manifold) to another element of the fiber over a point infinitesimally 
close…

( )g r
G G x dxT M+xT M
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r r dr+

( )g r ( )g r dr+

S
x x dx+

( )v x
� ( )v x dx+�

M

Fiber bundle =                                            Fiber bundle = Tangent bundle 
of a manifold

Example: Parallel transport on a Riemannian manifold …              :  Levi-Civita
connection

G S× TM
M

ω
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… integrating         along a closed loop… 

θ g

G

r

S

ω

GT-UAV EMN, IRCCyN

loop area

dθ ω ω= =∫ ∫

r

A cyclic change of shape

A net displacement in G
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( ) 0r rη + =ɺA

The locomotion model is generally a dynamic model which can 

degenerate into kinematics, when we have a linear relation :
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• Defines a connexion on              [Ehresmann,1950]

• Encodes the model of all reaction forces 
G S×

In bio-inspired robotics there are two well known cases where locomotion 
is modelled by a connexion…
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First case:  conservation law (ex. falling cat…)

( ) 0ref sh R J rσ σ σ α= + = Ω + =ɺ

1( )( )J r rα−Ω = − ɺ

0t =

G
(3)R SO∈
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1( ) ( ) ( )r J r rα−=A

Mechanical connexion 
[Marsden 78, Montgomery 93]

Falling cat

Remark: Applying the same idea to 
translations of the reference frame…

( ) 0r =A

(3)R SO∈

Satellite with rotors

G

1rɺ

2rɺ

3rɺ Ω
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Second case:  snakes in lateral undulation

Non-Holonomic 
Platform

(2)g SE∈
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Principal kinematic connexion [Kelly & Murray, 95]( ) :rA

2 RWS c.
1 NS c.

( )r rη = − ɺA
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• First case where        requires no physics : when the contacts are ideal i.e. defined 

by kinematic constraints …

This is the case of (wheeled) Mobile Multi-body Systems (MMS) [Boyer&Ali, 11] :

extF

GT-UAV EMN, IRCCyN

,                         ,                   ,                                    ,                                …
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“Hirose ACM-R5”



This MMS is a serial assembly of passive wheeled axels connected by active joints…

Reproduces the principle of
Snake creeping:

Body undulations 
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η (2)G SE=

Gathering all the constraint equations on           :G S×

( ) ( ) 0A r B r rη + =ɺ (*)

“ACMechanism”

Lateral reaction forces 

Axial resultant 

Body undulations 
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2 cases depending upon

“                                   “ plays a crucial role in wheeled MMS classification…

( ) / 3rank A

( ) ( ) 0A r B r rη + =ɺ

● Case 1 (fully constrained):                                       Block partition of constraints…( ) 3rank A =

0( )( ) B rA r
rη

     
+ =     ɺ

ɶ ɶ

1ex: selection of 
3 axels (i, j, k) 
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0( )( )
r

B rA r
η + =     

   
ɺ

ɶ ɶ 2

Allows to compute the other joint motions which preserve mobility…

compatibility conditions 2

1( ) ( ) ( )A r B r r r rη −= − = −ɺ ɺA

Principal kinematic connection: 
encodes the constraints of the wheels1
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[Ostrowsky & Burdick,1999]

3 axels (i, j, k) 



( ) 3rank A <

The MMS has not enough constraints to be governed by kinematics only!

  ( ) ( )rH r J r rη η= + ɺ

● Case 2 (under constrained):

Generalized Inversion of  (*)  
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Where:        kinematically undetermined!rη

To determine                 we need dynamics…rη

†A B−( )Ker A∈
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Dynamics are required if the system can move with its shape locked…

r

Example: the snake board

Remark :                    =    space of net velocities with    locked!( )Ker A

GT-UAV EMN, IRCCyN

Other example: Singular configurations of ACM…
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Contains all the sub cases:

1

( )
r r r

r

F

g g H Jr

η
η

−  
=    +   

ɺ

ɺ ɺ

M

Projection of the unconstrained dynamics in            : 

, with:

T
r H H=M M

( ( ))T
r rF H F H Jr Jrη= − + +ɺ ɺɺ ɺɺ�M

ext inertF F+�

( )Ker A

GT-UAV EMN, IRCCyN

Case1: Pure Kinematic case 
(Snake robot)

Case2: Mixed Kinematic and 
Dynamic case  (Snakeboard)

Case3: Pure dynamic case (fish 
robot)

0,  0H J= = − ≠A 0,  ( 0,  0)H J J≠ ≠ = 1,  0H J= =
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In the general case, a dynamic model is required… 

1
( , , , ) ( , ) ( , )

2
T T

T

m
l g r r r U g r

m M r

η
η η   

= −  
  

ɺ ɺ
ɺ

M
To get it, take the Lagrangian:

d l l   ∂ ∂

Poincaré equations [Poincaré, 1901]:
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*
ext

d l l
ad F

dt ηη η
   ∂ ∂− =   ∂ ∂   

reconstruction eq. from     to              η g

1F

g g

η
η

−  
=   

   

ɺ

ɺ

M

Locomotion dynamics in state space :

ext inertF F= + : locked forces

locked inertia tensor
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Which can be extremly difficult… 

In general,         requires to solve the contact dynamics of the system / world …extF

For example in swimming,         requires to solve Navier-Stokes equations!
extF

GT-UAV EMN, IRCCyN

However, there exists some simple situations where        only requires geometry 

(no physics)…           two cases…

extF

30

by M. Bergmann



• Snd case: when         is Lagrangian [Birkhoff, 66], i.e. when there exists                   …

*ext ext
ext

l ld
F ad

dt ηη η
∂ ∂   = − +   ∂ ∂   

( , , )extl r rη ɺextF

Locomotion dynamics:

*( ) ( )
0ext extl l l ld

ad
dt ηη η

∂ + ∂ +   − =   ∂ ∂   But then…

( )
0  ,  extl l

t
η

∂ +
= ∀

∂
( )

0extl l

η
∂ +

=
∂

: Locomotion dynamics:if at ,0t =

s.t.:
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Swimming at high Reynolds in a quiescent potential flow:

1
( , )

2
T T

ext T

m
l l r

rm M

η
η

  
+ =   

  

ɶ ɶ
ɺ

ɶ ɺɶ

M
ext fluidl T=

Tensor of virtual inertia 
= solid+ added              

0mrη + =ɶ ɶ ɺM ( ) 0r rη + =ɶ ɺA

Mechanical connection: encodes kinetic exchanges body / fluid…[Kanso, 2005, 09…]  

Conservation law of kinetic momentum:

0  ,  t
η

= ∀
∂

0
η

=
∂

: Locomotion dynamics:if at ,0t =
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Remarks:

A cyclic change of one dof shape                no phase shift on G

G

S
Theorem of Scallop …

1°)   Can change the orientation but also the position

2°)

GT-UAV EMN, IRCCyN

g

r

S
Theorem of Scallop …

rɺ
rɺ

3°) similar context at low Reynolds with viscous forces…

32



At high Reynolds, kinetic conservation laws can be prolonged to the case with 
vorticity… applying the balance of impulses wrench [Saffmann, 92] gives:

1
( )  02B Frfsh

x n u da x dvpp ω ω
∂

 × × + ×     
+ + =     

∫ ∫
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Animals generate (and control) vortices to move efficiently!

2 2

02
1 1 0

( )  
2 2

rfsh

rfsh

B F

p

x n u da x dvω
σσ ω

∂

    
+ + =     

       − × − 
 ∫ ∫

Starting at rest

A scallop escapes from its theorem…

Impulse wrench due to 
vorticity



Generate vorticity for what?

• To manoeuver (turn, plung…) in the case of fishes

More generally…
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Remind the basic picture of lift generation in steady aerodynamics…

Shed vorticity 

bound vorticity

circulation

lift!

L Uρ= Γ

• To generate lift (used for sustentation, thrust…) against drag:



• Wake energy recovering:
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• Flow energy recovering : vidéo

[JFM (subm.) 11]
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Exemple of the flapping wing

Understand the mechanisms 
vidéo

vidéo
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Modelling the contact forces

,

,

0 0

. 0

( ) 0

a e in f
T
a aa ae a a in fa a
T
e ea ee e e in ee e e fe

m m F F

m M M r Q Q

m M M r Q K r r Q

η
τ

         
         + + + =         

                    

ɺɺ

ɺɺ

M

Put them in the Poincaré equations



Exemple of the anguilliform swimming [TRO 08, JNLS 10, JFM 11]

2°) a kinetic balance of the fluid in      

L.A.E.B.T. [Lighthill, 1970] Mechanism of kinetic energy amplification

D

D1°) Control-volume      =    te radius hemisphere boun ded by caudal plane ∞ π
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1

1 2
1 2 2 2 1 2 1 2 2 10

1

1

2 X

Te Le mV t dX mV V t mV t
t =

∂  + = − + − ∂  
∫

2°) a kinetic balance of the fluid in      

Thrust Shed impulse

Shed 
kinetic energy

D

Self propell the fish body
vidéo



Exemple of the Snake creeping

When the total number of independent constraints    6≥

Locomotion entirely ruled by kinematics of contact and controlled strains

• External dynamics…

[TRO 11, TRO 12]
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( , , , , ,...)o o d d d df gη ξ ξ ξ ξ′ ′′= ɺ Forward locomotion kinematics

T Tad ad F
t Xη ξη η ξ ξ
       ∂ ∂ ∂ ∂ ∂ ∂− + − =       ∂ ∂ ∂ ∂ ∂ ∂       

L L L L

F
ξ ±

±

 ∂ = ± ∂ 

L 1
( ( ))

2
T T

d tη η ξ ξ= − = − Λ −L T U MWith:

Poincaré equations 
of a Cosserat-beam

• Internal dynamics…

vidéo



Questions …?
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Questions …?
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