

Miniature visual motion sensors

F. L. Roubieu, F. Expert, S. Viollet and F. Ruffier

Biorobotics Dpt. Institute of Movement Sciences (Marseille, France) Aix-Marseille Univ. / CNRS

10th November 2011

Outline

Optic flow definition

Part 1 : Time of travel processing and optical characterization

Part 2 : Linear pixels versus Adaptive pixels

Part 3 : Time of travel processing versus Mouse sensor

Part 4 : Stand alone 1-gram device of the visual motion sensor

Conclusion

Optic flow definition

-> Winged insects use optic flow, ω , to navigate

<section-header><section-header><section-header></section-header></section-header></section-header>	1992Image: Strain of the	<image/> <image/> <image/> <text></text>
Mass (g/LMU)	6	2.5
Size (mm²/LMU)	1260	500
Power consumption (mW/LMU)	100	40
Number of LMU	1	1

Optic flow sensors

Ruffier et al. (2003) IEEE ISCAS

Beyeler, Zufferey and Floreano 2005

No full characterization of optic flow sensors :

- Influence of illuminance changes
- Outdoors and indoors
- Refresh rate

Barrows, Centeye

Tested sensors

LSC : Linear array from IC-HAUS company

- Linear on-chip preamplification circuit
- 6 pixels

Adaptive Pixels for Insect-based Sensors (APIS)

Viollet et al. (2010) Proc. of SENSORCOMM Conf.

- Delbrück-type auto-adaptive pixels Delbrück and Mead 1994
- Custom-made VLSI retina comprising 25 pixels

Tested sensors

LSC : Linear array from IC-HAUS company

Adaptive Pixels for Insect-based Sensors (APIS)

Adapted from *Normann and Perlman 1979* (on turtle retina)

Tested sensors

LSC : Linear array from IC-HAUS company

Adaptive Pixels for Insect-based Sensors (APIS)

Expert, Viollet and Ruffier (2011) Journal of Field Robotics

ADNS9500 - Mouse sensor

- 30x30 pixels

Expert, Viollet and Ruffier (2011) IEEE Sensors Conf.

Part 1 :

Time of travel processing and optical characterization

A fly-inspired elementary eye

ω

 \Rightarrow The eye optics converts the angular velocity (optic flow) ωinto a delay Δt ("travel time" of a contrast edge)

 \Rightarrow Our EMD outputs a voltage $\omega \simeq \Delta \varphi / \Delta t$

Ruffier et al. IEEE ISCAS 2003

Time of travel scheme (Blanes 86; Franceschini et al. 89, 92)

Time of travel scheme (Blanes 86; Franceschini et al. 89, 92)

For the LSC-based sensor, identification from a slow rotation in front of a fixed point light source.

-> Tuning $\Delta \rho$ by defocusing the lens

For the LSC-based sensor, identification from a slow rotation in front of a fixed point light source.

For the APIS-based sensor, identification from a rotation in front of a vertical black-and-white contrasting edge because of the temporal high-pass filter effect

Kerhuel (2009) Phd thesis

For the APIS-based sensor, identification from a rotation in front of a vertical black-and-white contrasting edge.

Expert, Viollet and Ruffier (2011) Journal of Field Robotics

Part 2 : Linear pixels versus Adaptive pixels

LSC : Linear array from IC-HAUS company

Adaptive Pixels for Insect-based Sensors (APIS)

Test board

Real 3D scenes

Indoor and Outdoor environments. Uncontrolled illuminance and contrasts spatial frequency and intensity.

Expert, Viollet and Ruffier (2011) Journal of Field Robotics

Broad range of illuminance

Linearity Error < 2.2%

The dispersion of the APIS-based sensor increased with the illuminance.

The LSC-based sensor can not detect contrasts at low illuminance. Linearity of about 5% Dispersion < 35°/s

Mechanical angular speed Ω (°/s)

Expert, Viollet and Ruffier (2011) Journal of Field Robotics

Refresh rate analysis

Refresh rate = number of new measurements per second with a time lag between the two pixels detection belonging to our measurement range $[50^{\circ}/s, 350^{\circ}/s]$

Refresh rate analysis- APIS

APIS-based sensor refresh rate independent of the illuminance.

Do not increase linearly with the angular speed due to the strong variations in the background illuminance.

The APIS chip is therefore constantly adapting to a new illuminance with a relatively slow time constant.

Refresh rate analysis - LSC

Strong refresh rate variations with the illuminance.

Linear increase of the number of new measurements with the angular speed for the LSC-based sensor.

Saturation at high angular speeds due to the low-pass filters.

Refresh rate analysis

Expert, Viollet and Ruffier (2011) Journal of Field Robotics

Dynamic characteristics

Expert, Viollet and Ruffier (2011) Journal of Field Robotics

Conclusion of Part 2

-> LSC-based sensor can provide 1 angular speed measurement in a narrow illuminance range (1.5 decades).

-> APIS-based sensor can provide 1 angular speed measurement in a 3-decade range (independant of the illuminance).

LSC

Part 3 : Time of travel processing versus Mouse sensor

LSC : Linear array from IC-HAUS company

Mouse sensor

Expert, Viollet and Ruffier (2011) IEEE-Sensors Conf. 2011

Dynamic characteristics

Expert, Viollet and Ruffier (2011) IEEE-Sensors Conf. 2011

Dynamic characteristics

Conclusion of Part 3

-> LSC-based sensor can provide 1 angular speed measurement in a narrow illuminance range (1.5 decades).

-> Mouse sensor can provide 2 angular speed (x-y) measurement with a better refreshed output 25Hz (high illuminance).

LSC

Mouse sensor

Expert, Viollet and Ruffier (2011) IEEE-Sensors Conf. 2011

Part 4 : Stand alone 1-gram device of the visual motion sensor

-> 5 single 1-D angular speed measurements, $\omega \in [25^{\circ}/s; 350^{\circ}/s]$

- -> 1 fused output : median of the 5 single measurements
- -> Size, mass and power-consumption reduced

Roubieu, Expert, Boyron, Fuschlock, Viollet and Ruffier (2011) IEEE-Sensors Conf.

IEEE Sensors 2011: Best Student Paper Award « 1st prize »

Lens/photodiode assembly

Linear array of 6 photodiodes

- Linear on-chip current preamplification circuit

Lens from *Sparkfun*[™]

- Focal length 2mm
- f-number 2.8

Lens/photodiode assembly

Linear array of 6 photodiodes Gaussian angular sensitivities

- Linear on-chip current preamplification circuit

Lens from *Sparkfun*™

- Focal length 2mm
- f-number 2.8

Time of travel scheme (Blanes 86; Franceschini et al. 89, 92):

6 processing steps

Time of travel scheme (Blanes 86; Franceschini et al. 89, 92):

6 processing steps

Time of travel scheme (Blanes 86; Franceschini et al. 89, 92):

6 processing steps

Time of travel scheme (Blanes 86; Franceschini et al. 89, 92):

6 processing steps

Time of travel scheme (Blanes 86; Franceschini et al. 89, 92):

6 processing steps

Time of travel scheme (Blanes 86; Franceschini et al. 89, 92):

6 processing steps

Time of travel scheme (Blanes 86; Franceschini et al. 89, 92):

6 processing steps

Time of travel scheme (Blanes 86; Franceschini et al. 89, 92):

6 processing steps

Roubieu, Expert, Boyron, Fuschlock, Viollet and Ruffier (2011) IEEE-Sensors Conf. Implemented into a tiny 16bits dsPic microcontroller !!

Experiment

Indoor experiment on natural coloured scene under natural light conditions (~1500lux) V_{wall} W_{wall}

Roubieu, Expert, Boyron, Fuschlock, Viollet and Ruffier (2011) IEEE- 6-photosensor Sensors Conf. array

Experiment

Indoor experiment on natural coloured scene under natural light conditions (~1500lux) V_{wall} W_{wall}

Roubieu, Expert, Boyron, Fuschlock, Viollet and Ruffier (2011) IEEE- 6-photosensor Sensors Conf. array

Results : $\alpha = 60^{\circ}$

Results : $\alpha = 60^{\circ}$

Roubieu, Expert, Boyron, Fuschlock, Viollet and Ruffier (2011) IEEE-Sensors Conf.

Results : $\alpha = 60^{\circ}$

∕ 1.7-fold	Single LMU output	Median value output
Std error	19 °/s	11 °/s
F refresh		

Results : $\alpha = 60^{\circ}$

✓ 4-fold	Single LMU output	Median value output
Std error	19 °/s	11 °/s
F refresh	13 Hz	56,14 Hz

Conclusion (Part 2 & 3)

-> LSC-based sensor can provide 1 angular speed measurement in a narrow illuminance range (1.5 decades).

-> APIS-based sensor can provide 1 angular speed measurement in a 3decade range (independant of the illuminance).

-> Mouse sensor can provide 2 angular speed (x-y) measurement with a better refreshed output 25Hz (high illuminance).

LSC

APIS

Mouse sensor

Conclusion (Part 4)

-> 1-gram insect-based visual motion sensor of 23.3 x 12.3 mm

- -> 5 simultaneous 1-D angular speed measurements, $\omega \in [25^{\circ}/s; 350^{\circ}/s]$
- -> 1 fused output : 1,7-fold more accurate (Std error= $10^{\circ}/s$) and 4-fold more refreshed output (up to **f**refresh=65Hz on average) than a single LMU

Roubieu, Expert, Boyron, Fuschlock, Viollet and Ruffier (2011) IEEE-Sensors Conf.

Any further informations ?

Please contact :

Stéphane Viollet stephane.viollet@univmed.fr

Franck Ruffier franck.ruffier@univmed.fr