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Aerial vehicles

Rotary-wings in hovering phase
• Lift forces are negligible
• Thrust counteracts the weight
• High energy consumption

Fixed-wings in cruising phase
• Lift compensates the weight
• Thrust counteracts the drag
• Low energy consumption
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Aerial vehicles

Rotary-wings in hovering phase
• Nonlinear feedback methods
developed by neglecting the
aerodynamic forces

Fixed-wings in cruising phase
• Feedback methods for
linearized aerodynamic models
• Only local stability is concerned
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Convertible vehicles

In vertical take-off phase
• the aerodynamic forces are
negligible
• control design similar to the
one for hovering phase

In cruising flight phase
• the aerodynamic forces are
preponderant
• control design similar to the
one for cruising phase

Control requirement
Robust transition maneuvers from take-off to cruising flight
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Objectives

• Analysis and modeling of the aerodynamic reaction forces

• Development of nonlinear controllers by taking into account the
nonlinearities of the aerodynamic reaction forces

• Development of a unique robust control law from take-off to
cruising flight
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Problem statement, notation and system modeling

A single actuated vehicle immersed in air which exerts reaction
forces is considered in the 3-D Lie group SE (2)

• � angle between ~{0 and ~{
• ẋ linear velocity of G

System’s dynamics
mẍ = �TR(�)e1 +mge1 +Fa(ẋa;�)

J!̇ =M+Ma

ẋa = ẋ � ẋw

Assumption
Complete torque actuation =) ! as control input
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Aerodynamic reaction forces

• Interactions between a solid body and the surrounding fluid are
governed by Navier�Stokes equations

• They are a set of nonlinear partial differential equations involving
• viscosity,
• compressibility,
• and density of the fluid

• Solving the equations requires spatial integration over the shape of
the body which typically does not yield closed-form expressions
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Analytical expression of the aerodynamic forces
Lift and drag decomposition

Fa = FL +FD

FL = kajẋajcL(�)ẋ?a
FD = �kajẋajcD(�)ẋa

Buckingham � theorem
cL = cL(Re ;M;�)

cD = cD(Re ;M;�)

• ka := 1
2�Σ, � is the air density, Σ is the length of the body

• cL(�) is the lift coefficient

• cD(�) > 0 is the drag coefficient

• Re is the Reynolds number

• M is the Mach number

• � is the angle of attack
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FD = �kajẋajcD(�)ẋa
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Analytical expression of the aerodynamic forces
Lift and drag decomposition

Fa = FL +FD

FL = kajẋajcL(�)ẋ?a
FD = �kajẋajcD(�)ẋa

Buckingham � theorem
cL = cL(Re ;M;�)

cD = cD(Re ;M;�)

The angle of attack
�(ẋa;�) = �+��
(ẋa)��

Flow regimes: a thumb criterion
• Subsonic flow if M < 0:8.
• Transonic flow if 0:8<M < 1:2.
• Supersonic flow if 1:2<M < 5.
• Hypersonic flow if M > 5.
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Aerodynamic characteristics in the low-subsonic regime

Mach number M < 0:5
• The air � is approximately constant
• M does not greatly affect cL and cD )

• cL = cL(Re ;�), cD = cD(Re ;�)

• Typical data for cL and cD
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Aerodynamic characteristics in the low-subsonic regime
Lift and drag coefficient for NACA airfoil 0021
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Single frequency approximation in low-subsonic regime
Assumption: bi-symmetric body(

cD(�) = cD(��)

cL(�) = � cL(��)(
cD(�) = cD(�+�)

cL(�) = cL(�+�)

Single frequency approximation(
cD(�) = cD0 +2c1 sin2(�)

cL(�) = c1 sin(2�)

Important fact:
the value for c1 must be properly chosen, i.e. solution to least
square minimization problem.
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Single frequency approximation in low-subsonic regime
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Introduction to the control problem
System’s dynamics

mẍ = �TR(�)e1 +mge1 +Fa(ẋa;�)

�̇ = !

Spherical shapes (Hua, Hamel, Morin & Samson 2009)
Fa(ẋa;�) = Fa(ẋa) ) Control design much simplified

Example. Let ėx = ẋ � ẋr (t). Then ėx � 0 ()

�TR(�)e1 +F (ẋ ; t) = 0

F (ẋ ; t): “apparent external forces”

The alike-spherical characteristics
Class of functions cL and cD for which T �! Tp yields

mẍ = �TpR(�)e1 +mge1 +Fp(ẋa)
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The case of single frequency approximation of cL and cD
Assume that the resultant of the aerodynamic forces is of the form

Fa = kajẋaj
h
cL(�)S� cD(�)I

i
ẋa:

Main result
mẍ =�TR(�)e1 +mge1 +Fa(ẋa;�)

can be transformed into the form
mẍ =�TpR(�)e1 +mge1 +Fp(ẋa)

with Fp independent of �, if(
cD(�) = cD0 +2c1 sin2(�)

cL(�) = c1 sin(2�)

Accepted to
50th IEEE Conference on
Decision and Control and
European Control
Conference

Control design
Once the transformation is done, the control design is similar to
the one for systems subjected to drag forces only
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A control solution based on (Hua et al. 2009)
• Control laws guarantee (almost)-global stability domain for xr (t)

• Ensures robustness properties

Simulation from hovering to cruising flight:

-1.5

-0.75

0

0.75

1.5

Li
ft

[�
]

(a)

0

0.5

1

1.5
(b)

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350

D
ra

g
[�

]

� [o]

0

0.5

1

0 5 10 15 20 25 30 35 40 45
� [o]

Re= 0:16 �106

SFApp.

D. Pucci Nonlinear Control of PVTOL Vehicles subjected to Drag and Lift Forces 13/17



Introduction Background The alike-spherical case Conclusions and future work

From hovering to cruising flight
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Conclusions

Absence of the stall phenomena
• Control problem recasted to the one of a spherical shape
• Control design is similar to the one for systems subjected to drag
• Using (Hua et al. 2009) (almost)-global stability and robustness
to constant disturbances can be achieved

Stall phenomena
• Existence of equilibrium point is ensured
• Uniqueness of the equilibrium point is not ensured
• Reference trajectories ensuring continuity of �e(t)

• Global stability difficult to achieve
• Laws ensuring local stability of xr or ẋr have been developed
• Robustness to unmodelled dynamics are achieved
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Future work

• Nature of the equilibrium points

• Positivity of the thrust

• Convergence to the e.p. endowed with the smallest drag

• Enlarge the domain of attraction

• Take into account the !�dynamics

• 3D-Case ...
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