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Outline

� Problem statement: precision landing

� TAS activities in vision-based navigation
� A vision-based navigation chain

� Focus on crater detection for reckoning
� Perspectives
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Toward precision landing for interplanetary mission s

MER (~ 150 x 25 km) 2004

Phoenix (~ 70 x 20 km) 2008

MSL (~ 20 x 10 km) launch 2011

target (~ 5 km) > 2011

Mission to Mars
� We want to reach points of scientific interests on Mars

■ Methane sources
■ Exposed ancient terrain

■ Other…
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Toward precision landing for interplanetary mission s

Mission to the Moon
� Operational points of interest

■ Near the lunar poles, the Sun always low on the horizon
■ High altitude points (crater rims) are nearly always in the Sun

• A good place to land

■ Low altitude points (crater bottoms) are always in the shade
• A possible place to find water ice

■ Enabling capability for human base on
the Moon

� Typical need: 100 m – 200 m

19 km19 km

Shackleton Shackleton cratercrater

© ESA
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Toward precision landing for Interplanetary mission s

“Standard” lander navigation
� Position knowledge initialized from “ground tracking”
� On-board knowledge of gravity field
� Measurement of non-gravitational acceleration by IMU
� Propagation by inertial navigation

Error sources
� Initial position error (typically 1 km)
� On-board gravity model errors (up to 500 m on the Moon)
� IMU integration error (typically 600 m – 10 km)

Conclusions
� Need terrain-relative sensors to reduce navigation error (altimeter, lidar and/or 

camera)
� NB: terrain-relative sensors are also needed for other purposes:

■ Fine control of terminal velocity
■ Hazard detection and avoidance
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Lunar Lander Scenario

Powered landing
� High-thrust rocket engine to reduce velocity

� Attitude Control Thrusters
� Relative Navigation Sensors

Terrain relative Terrain relative 
sensorsensor

800 km800 km

15 km15 km

~ 2 km/s~ 2 km/s

~ 5 m/s~ 5 m/s

Braking Braking phase (~ 900 s)phase (~ 900 s)
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Lunar Lander Scenario

Powered landing
� Hazard avoidance (last 100 meters)

Safe landingSafe landing phase (~ 70 s)phase (~ 70 s)

< 100 m< 100 m
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Vision-based navigation

On-going research at Thales Alenia Space
� STEPS project in Turin

■ Design of an end-to-end autonomous safe landing system
■ With optical navigation and hazard avoidance

� Collaboration with ESA and NGC (Canadian SME)

■ Navigation system focused on precision landing using visual landmarks
■ PhD thesis of V. Simard Bilodeau

� Present work
■ A new method for crater detection
■ To be used for both projects
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Vision-based navigation

A possible Guidance, Navigation and Control scheme for Lunar Landing

State State 
EstimatorEstimator

IMUIMU

CameraCamera

Terrain relative Terrain relative 
Position, Position, VelocityVelocity

andand Attitude Attitude 
quaternion + massquaternion + mass

Navigation Navigation FunctionFunction
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Vision-based navigation

Guidance, Navigation and Control scheme

HazardHazard
DetectionDetection

lidarlidar

CameraCamera

Guidance Guidance FunctionFunction

Curent Position Curent Position andand
VelocityVelocity + mass+ mass

Landing TargetLanding Target

TrajectoryTrajectory
GenerationGeneration

ThrustThrust profileprofile
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Vision-based navigation

Guidance, Navigation and Control scheme

Control / Control / ActuatorActuator management management FunctionFunction

Attitude estimationAttitude estimation

Attitude Attitude 
ControlControl

ThrustThrust directiondirection

ThrustThrust
modulationmodulation

ThrustThrust magnitudemagnitude

Mass estimationMass estimation
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Vision-based navigation

Optical Navigation
� Two types of measurements

■ Tracking of image features between successive frame
• Provides information on rotation and translation direction between two spacecraft 

poses

■ Detection and identification of referenced features or landmarks: reckoning
• Using on-board landmark map
• Provides information on the spacecraft position and attitude

M a t c h e d  Im a g e  ( l e ft :  r e fe r e n c e  i m a g e ,  r i g t h :  c a m e r a  i m a g e )

p i x e l s
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© NGC Aerospace
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Vision-based navigation

Navigation Filter
� Based on a classical Extended Kalman Filter, typically at 1 Hz

� Spacecraft states
■ Attitude quaternion
■ Spacecraft position and velocity

■ Gyro  and accelerometer bias
� Propagation

■ Linear (non-gravitational) and angular accelerations are provided by the IMU
■ On-board gravity model

� Modeled process noises

■ Gyro and accelerometer white noise
■ Gyro and accelerometer bias drift (also accounts for gravity field uncertainty)

� Measurements noises
■ Camera localization noise (in pixels)

■ Landmark map position error
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Vision-based navigation

Handling measurement delay to due to processing tim e
� Tracking

■ FPGA implementation assumed
■ negligible delay assumed

� Reckoning

■ uses full frame images
■ Complex algorithms

■ We assume 5 s (5 cycles) of delay
� Several ways to deal with measurement delay, we chose to augment the states 

with the time-lagged state (position, velocity and attitude)
■ Time-lagged state is linked to current state by cross-covariance

■ Although measurement bears on time-lagged state, the current state is also 
updated

� Augmenting states is also useful for feature tracking measurement model
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Vision-based navigation

Measurement model
� Reckoning

■ Straightforward measurement model: line of sight to reference points
■ Noise: contributions from camera measurement noise + landmark position 

error
� Tracking

■ Feature position is not known
■ Classical approaches use variants of SLAM
■ Proposed approach: the same feature tracked between two images provides 

one epipolar constraint on the movement of the camera

■ Treat essential matrix Q1,2 as a function of states 1 and 2
■ Noise: measurement error in image 2 of feature extracted in image 1

� To appear in V. Simard Bilodeau et al, AAS GNC Conf., Breckenridge, 2010
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Reckoning

Using one or several images + on-board map, determi ne the position & 
attitude of the camera

� Reference map has been constructed previously (former mission or former 
phases of the same mission)

� Reference map acquired with a different resolution, with different viewing 
conditions (illumination and pose)

The reckoning algorithm should
� Be robust to changes of pose, resolution and illumination

� Minimize CPU time
� Minimize memory requirements

Assumptions
� A priori knowledge of attitude is already quite good
� Current Sun direction is also quite well known

� On bodies without atmosphere: very sharp shadows (no diffuse light)
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Reckoning

Type of cues that can be used for global reckoning
� Structure

■ Matching of Digital Elevation Map
■ Complex
■ Requires specific sensor (scanning lidar) or large baseline (structure from 

motion)

■ Robust to pose/lighting conditions
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Reckoning

Type of cues that can be used for global reckoning
� Local low-level features

■ Texture elements from the image
■ Matching based on

• Correlation (Mourikis et al)
• Feature descriptor (SURF)
• geometry of the feature pattern (Landstel, Pham et al)

■ Very slow to very fast algorithms
■ Limited robustness to pose/scale/lighting conditions

Feature Matched in the Reference Map
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Reckoning

Type of cues that can be used for global reckoning
� Global features or landmarks

■ High-level surface features
• Boulders
• Ridges
• Craters

■ Complex algorithms for detection and matching

■ Robust to pose/lighting conditions
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Reckoning

Why craters ?
� Impact craters are ubiquitous in the Solar System

■ except on bodies with a dense atmosphere 
(Venus, Earth, Titan)

■ And except on small asteroids
� Created by impacts of asteroid and comets

� Craters are present at every scale
� Simple craters (below 100 km) have a very distinctive 

shape
■ Does not depend on impactor size, velocity

■ Shape creates a distinctive visual signature
■ Erosion on Mars: old vs. new craters

© ESA
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Crater detection: state of the art

• Hough-transform based :
� Exemple of previous work :Yong Sang Chia 2 Yong 2007, Ballard 1979.

� Principle
■ Edges or pixel based

■ Finds ellipses by building accumulators on ellipse parameter space
■ Methods to reduce the parameter space

� Pros

■ Robust against edge discontinuity.
� Cons

■ Requires high computation power
■ Sensitive to noise.
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Crater detection: state of the art

Edge-based :
� Exemple of previous work : Cheng and al. (2005)

� Edge detection and continuation
� Light-consistency filtering, dark/bright arc pairing

� Pros
■ The algorithm false detection rate is low and accuracy of the crater 

localisation in pixel is good.
� Cons

■ Not robust to noisy edges of old craters (but more robust than the majority of 
Hough-based algorithm)

■ Requires high computation power.
Filtered Thin Edges
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© NGC Aerospace
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Segmentation-based Crater Detection

Initial Image

Prior information :

Sunlight « rough » angle and elevation, 
Min/Max size of objects of interest

Unsupervised segmentation
Example : K-means with N classes

Selection of potential 
Dark/Bright objects

Geometrical checkEllipse 
characterization
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Visual results on real images

Moon, Billy Crater, ©ESA Asteroid, Phoebe, ©ESA

But the algorithm is 
not always adapted :

Mars, Hourglass Crater, ©ESA

Shadow-Bright objects couple very difficult to detec t

Mars, Crater ice, ©NASE HiRISE

Tests on real images
� Same algorithm

performs correctly on 
very different images

� Very low level of false
alarm

� Detection is more 
difficult on highly eroded
martian craters
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Tests on synthetic images

• PANGU (Planetary Graphical Utility)
� Scene generator developed by U. Dundee under ESA contract

� Generates multi-resolution planetary terrain
■ User-provided DEM

■ Fractal refinement
■ Impact crater, boulder, dunes generation

� Pre-computed shadow map allows real-time scene generation

� Viewer
� Client/server mode for closed-loop simulations

� Available upon request from ESA
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Tests on synthetic images

• Test images generated with PANGU
� Images and associated « ground truth » of crater locations and sizes

� Three Sun elevations: 77.5°, 22.5°and 2.5°(~ Moon pol e case)
� 2 different views: nadir and slant

Nadir view, Sun lowNadir view, Sun high Nadir view, Sun very low

RawRaw imagesimages
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Tests on synthetic images

• Test images generated with PANGU
� Images and associated « ground truth » of crater locations and sizes

� Three Sun elevations: 77.5°, 22.5°and 2.5°(~ Moon pol e case)
� 2 different views: nadir and slant

Nadir view, Sun lowNadir view, Sun high Nadir view, Sun very low

EnhancedEnhanced imagesimages
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Quantitative results (synthetic images)
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Quantitative results (synthetic images)

Pd : 7/77
=> to be slightly enhanced

Pfa low : 0/77

Loc. error: mean ≈ 3 pixels, σ ≈ 2 pixels
=> to be enhanced

Pangu Simulation : Nadir view/ high sun elevation angle

Pangu Simulation : Nadir view/ very low sun elevation angle

Pd : 14/77

Pfa low : 0/77

Loc. error: mean ≈ 2.2 pixels, σ ≈ 2.3 pixels
=> to be slightly enhanced

NB : Slant view simulations give the 
same kind of results
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Segmentation-Based Crater Detection

Conclusions
� Good points

■ Very simple and fast algorithm
■ Robust and not very sensitive to parameters
■ Very low rate of false alarm (side effects only)

■ Good quantitative performance (localization < 3 pixels and size), could 
probably be enhanced

■ Robust to change of pose (slant view)
� To be improved

■ Large craters with non classical shape not detected on real images
■ Performance drops at high and very low Sun elevation

� So far, no use of a priori information

Navigation Filter simulation results (not presented  here)
� Assumptions: 15 meter error on crater map position + 3 pixels camera localization
� Performance < 50 m at touch-down
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Perspectives

Once crater have been detected, they must be identi fied
� Assuming that the attitude of the camera is known with good accuracy, one must 

first rectify the crater positions in the reference frame

Identification algorithms: state of the art
� Simple minimum distance approach

■ Not robust to large uncertainties
� Distance between pairs of craters

■ Not robust to uncertainty on scale

■ Leads to large database (list of all crater pairs)
� Projective invariants

■ Robust to large uncertainties on viewing conditions
■ Applicable to non-flat terrain
■ Very complex and costly
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Perspectives

Possible algorithms
� “Pole Star” signature

■ Identifier based on number of neighbours in successive distance bins
■ Very simple matching, small database
■ Not robust to large uncertainty on scale

� “Scale invariant” Pole Star
■ Using crater size as the reference distance for bins

� Use azimuth bins instead of distance bins


