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Introduction 

• Safe operations 

–  Single UAV 

• Fault detection and reconfiguration 

• Positioning (GPS problems) 

• Landing 

– Multiple UAV 

• Collisions 
– Other aircrafts 

– Environment 

– Physical interactions 
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Fault detection, identification and reconfiguration 
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Vision-based position estimation and navigation 

Aplication of homographies: Estimation of the 
motion of the aircraft with respect to 
ground (plane): translation and rotation.  
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Position: 
Vision vs GPS 

Mosaics to 

cancel  error 

accumulation 

Drift canceled when passing over stored 

areas.  
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• Develop direct-structure Networked Control System (sensors, actuators or 
controller connected through communication channel) for networked fault 
adaptive control. 

• Use external sensors in feedback  
loop. 

• Important issues: communications  
delay, package loss, sampling rate, … 

Reference  

 

input 

 
 

Vehicle 

 
 

Controller 
 

Actuators External 
Sensors 

Fault adaptive cooperative networked control 
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• Visual sensors to estimate relative position of other vehicles: 

System level fault detection and recovery 

VEHICLE 

UAV 

Two UAVs with 
cameras 
estimate position 
of a third UAV, 
experiments in 
FADA-CATEC 
indoor testbed. 
 

• External position estimation 

– UAV estimates relative position of VEHICLE (red). 

– UAV uses its own position estimation (blue) to derive 

VEHICLE absolute position estimation (dashed green), and 

transmits to VEHICLE. 

– VEHICLE does FDI using estimation from external sensor. 
• Fusion with other technologies  

– Range-only positioning  

– Range sensor. 

– Barometric sensors (relative altitude). 
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– Detection of planar pattern and 
homography computation for 
full position estimation  

– Implementation on a smart-
camera at 30 Hz. 

 

Landing using computer vision 

Landing without using 
patterns  
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EC-SAFEMOBIL (FP7 ICT, 2011-2015) 

Validations:  
• Landing on mobile platforms 

• UAV deployment from aircrafts  

 

 

 
 

 

http://www.ec-safemobil-project.eu 
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Emergency landing of a UAV In severe fault conditions 

Fixed wing 

Viewer Parachute deployment 
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Helicopters: Autorotation 
 

•  Energy exchange (Potential and kinematic energy)  

Velocity 
Altitude 

RPM main 
rotor 

Controlled descent 

Small UAVs helicopters platform limitations: 
 
•Less main rotor Inertia   Less energy storage capacity 
•Mass increment of avionics and payload respect to original setup 
 
Vortex ring state ( Descending movement) 
Unstable state, capacity to produce lifting force and the cyclic 
effectiveness are drastically reduced. 
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Telemetry analysis and control guidelines 

Autorotation phases: 
 

•Entry/Steady state (1):  Engine is not being powered anymore, the helicopter is 
descending. The aim is to increase the translational kinetic energy 

•Flare: 
First sub-phase (2)  Reduce the airspeed and the sink rate and increasing the blade 
energy accumulated in the main rotor.  
 

Second sub-phase (3)  Stop the vertical descent movement at about one meter 
above the ground using the stored energy of the main rotor by applying the proper 
collective pitch control. 

Control: collective (dcol -> 0 minimize main rotor drag) and pitch control 

• Final landing (4)   Remaining energy in the main rotor is used to reduce the forward 
speed that had not been canceled yet. When the rpm measurement of the main rotor falls 
below certain threshold value, the helicopter is allowed to gently touchdown 

Control: 
•  dcol altitude control 
• Pitch control to minimize 

forward velocity 
• Roll -> 0 for landing 
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FP5 COMETS (2002-2005) 
Real-time coordination and control of multiple 

heterogeneous unmanned aerial vehicles   
 

Multiple autonomous aerial vehicles  

RED-UAS demonstration (Nov, 2011) 

• Heterogeneity and team complementarities 

    Detection and localisation of alarms 

• Grid-based Bayes filter for integration of 

sensor readings and prior information 

• Information filters for data fusion 

• Updating the classification of the alarms by 

using binary filters 

• Communication relay and mapping 

• Cooperative perception 

 



- Exploration by means of UAS 

- Automatic detection 

- Computation and transmission of coordinates 

- Automatic ground actuation 

AWARE FP6  (2006-2009) 

Integration of  UAS with ground systems 
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Cooperative missions: Multi-UAV Area coverage 
• Multiple UAVs: constrained in flying endurance. 

• “Event detection” mission: cooperatively search a given area to detect objects 
of interest. 

• Divide area taking into account UAV’s relative capabilities (speed, altitude, 
remaining fuel, consumption)  and initial locations. 

• Each area covered using a zigzag pattern. 

• Objectives: Real time operation, Minimize number of turns. 

Dynamic reconfiguration  
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• Dividing area 

• Maximizing coverage ratio 

• Periodical communications 

 

 

Distributed area surveillance 
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Multi- UAV trajectory planning  
• Approaches:  

– Priorities 

– Global optimization 

– Dynamic characteristics 

– Anytime approach 

• Implementation of Dynamic 
Lazy Theta* to improve  
search in 3D  

• Implementation  in the 
CATEC indoor testbed 
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Conflict resolution: Problem Formulation 

• Multiple UAVs in a common airspace 

• Safety distance  Potential collision? 

• Discretization of the airspace: cubic cells 

– Trajectory is parameterized by a number of cells, entrance 
and departure time 

– Safety distance is given by a number of cells 

– Time spent in a cell depends on the aircraft model 

– All aircraft trajectories are known 

• OBJECTIVE: to find a collision-free trajectory while minimizing 
the total deviation from the initial 4D trajectory 
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Velocity Assignment Problem 

• UAV={UAV1,…,UAVn} set of UAVs 

– 3D dimensional 

– constant initial velocity (vi) 

– straight lines 

• Constrained interval of possible  velocities for 
each UAV 

• Collision detected:  Modify velocities of 
UAVs 
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Velocity Assignment Problem 

• Criterion: minimize the total deviation with 
respect to the predicted stay time in each cell 

 

 

 
• n is the number of UAVs,  

• Ci  is the number of cells crossed by the UAVi 

• tij and t’ij are the stay time of the UAVi when crossing the Cj 

• Models and velocity constraints 
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Implemented methods 

• Efficient conflict resolution methods for UAVs 
sharing airspace: 

1. Greedy method 

2. Discrete Velocity Allocation problem (DVA) 

3. Heuristic velocity planning with optimization 
phase 
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Conflict detection and resolution 
– Ensure safety:  Safety zone surrounding all vehicles 

– Minimize trajectory changes 

– Only modifies the speed 

– Discretized space 

– Bounded execution time 

 

Flight 
Plan 

Collision 
detector 

Conflict 
analyzer 

Search 
Tree 

QP 
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1 Cell 
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Application in the CATEC testbed 
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Example: multi-UAV trajectory planning for collision avoidance  

• Multi-UAV scenario             conflict detection and resolution system 

Obstacle 
 
Conflict 
 Initial trajectory 
 
Solution trajectory 
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Obstacle 
 
Conflict 
 Initial trajectory 
 
Solution trajectory 
 

Example: multi-UAV trajectory planning for collision avoidance  

 Multi-UAV scenario             conflict detection and resolution system 
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Trajectory optimization 
• Multiple UAVs in a common airspace: collision-free trajectories 
• A new UAV comes in this airspace  
• Separation among UAVs should be greater than a given safety distance  

Potential collision? 
• New UAV has to change its trajectory Intermediate waypoints 
• Information that the UAV needs: 

– Sequence of waypoints that each UAV will follow 
– Parameters of the model of each UAV 
– Position of the static obstacles 
– Wind model parameters 

• OBJECTIVE: to find a collision-free path while minimizing the changes of 
the trajectory 

 
 

 

Resolution based on three stages 
1. Detection algorithm based on a grid model 
2. Monte-Carlo method to predict the trajectories under uncertainties 

(wind, the UAV model inaccuracies, etc.) 
3. Genetic algorithms or Particle Swarm to compute the collision-free path 
4. Collocation methods 
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SIMULATIONS 
dreq=dsafe+σmax,i+σmax,j 

 
 

 
 

 
 

Obstacle1 

Obstacle2 Obstacle3 
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EC-SAFEMOBIL (FP7 ICT, 2011-2015) 

Methods:  
• Distributed estimation 

POMDPs 

• Distributed  decision and control 

POMDPs, distributed negotiations 

 

  

 

 

 
 

 

Safety in tracking 

http://www.ec-safemobil-project.eu 
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Application Scenarios 
Flying + Manipulation + Perception + Multi-robot Cooperation 

Aerial Robotics Applications Space 
Applications 

29 

Physical interactions with the environment 
Aerial Robotics Cooperative Assembly System 

FP7 ARCAS (2011-2015) 
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Physical interactions in the air 

• Joint load transportation 

 

 

 

 

 

 

 

 

 

 

 
FP6  AWARE (2006-2009) 
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Aerial Robotics Cooperative Assembly System (ARCAS)  
FP7-ICT-2011-7 

Development and experimental validation of the first cooperative  free-flying robot 
system for assembly and structure construction 

Several robotic aircrafts:  enhanced manipulation capabilities, 

increased reliability and reduced costs. 
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Quadrotor with arm 

• Quadrotor without arm: center of mass at vertical of quadrotor 
geometrical center. 

• Quadrotor with arm: arm center of mass displaced from vertical of 
geometrical center         generates external torque Tarm. 
 
 
 
 
 

• External torque Tarm(g) and inertia matrix J(g) vary with position of arm 
(g: arm joint angles).  

• If the arm picks an object, also m and Fgrav vary. 
• Contact of picked object with environment generates Fcontact , Tcontact. 
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Quadrotor with arm 
• Simulation 

– Arm kinematic/dynamic equations: Denavit-Hartenberg formulation 
using HEMERO toolbox, or simplified model.  

– Implement quadrotor dynamic equations in Simulink, including 
variable inertia matrix and variable arm external torque. 

• Quadrotor control 

– Estimation of arm external torque on quadrotor:   

Tarm = Tstruct + Tobject        and      Tcontact 
• Tstruct : torque generated by the mass and inertia of arm joints and links. Can be 

known very accurately using arm joint angle sensors and kinematic model. 
• Tobject : torque generated by the object picked with the arm. Can be known 

approximately if Motion Planner provides characteristics of object (weight, 
inertia matrix). 

• Tcontact : torque generated by the contact forces/torques of the object interacting 
with the environment and structure. Can be known if load cell installed on grip. 

If not, unknown. 
– Total external torque Tarm can be measured if load cell installed at arm base.  



Quadrotor controller design approaches 
– Baseline controller: standard quadrotor controller, integral term 

and feedback compensates deviation.  
• Classical cascaded PID. 

• Integral backstepping. 

–  Feedforward controller: feedforward term compensates torques 
generated by arm joints and links and picked object Tarm(g) .  

• Classical cascaded PID. 

• Integral backstepping. 

– Contact forces/torques of object with environment: can be large 
due to quadrotor movement. Then measure/estimate and 
include in controller. 

– Load cell installed on grip or estimation using nonlinear observer. 
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AIB 
Attitude controller 

Quadrotor+arm 

Controller Scheme 

• Adaptive Integral Backstepping(AIB) and PID controllers 

 AIB: Nonlinear backsteping with integral term  

• Control law with parameters  varying with arm motions 

• γi are joint angles of the arm; S.V. are state variables of quadrotor 

 

Roll AIB controller  
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Controller Scheme 

Quadrotor trying to maintain hover with arm motions (Simulations):   
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AIB Controller Vs PID Controller 
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ARCAS First designs: Manipulation 
Feedforward controller to compensate torques generated by arm joints and links 

and picked object Tarm(g).  
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ARCAS First designs 
Electrical helicopter with advanced gripper mounted on actuated cardan joint.  

The cardan joint will be replaced by a manipulator with five degrees of freedom  
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 Perception in ARCAS 
 

 
 Scene recognition 

• Detection and localization of the parts to be used 

in structure assembly: Illumination invariants, 

recognition with challenging orientation variation 

• Identification of a suitable location for the 

structure 

  

 

 Fast 3D model generation  

• SGM-Method for close range 3D-modelling 

40 

 Range only SLAM in structure assembly 
• Structure parts and aerial robots with radio 

systems  in structure assembly 

• Gaussian Mixture approaches  for EKF and EIF  

  

 

 Reliable tracking of 3D objects 
• 3D Object tracking using cameras with varying 

focal length: To be used in visual servoing 

• Uncallibrated image-based visual servoing 

 Cooperative perception 
• Combine the information from multiple aerial robots 

• Distributed methods: decentralized GMM-based filters 

• Active perception 
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ARCAS Planning 

41 

• Assembly planning:  symbolic/geometric, SHOP &  assembly from dissasembly, 

adaptability and replanning for dynamic environments 

• Human plan refining using mixed initiatives 

• Safe coordinated trajectories generation and execution: collision detection and 

avoidance (UAV+arm+object),  trajectory optimization for cooperating UAVs 

 
 

ARCAS: Aerial Robotics Cooperative Assembly System. A. Ollero. IROS 2012  

Human plan refining Safe trajectory  generation 

Assembly 

planning 
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• Center of Experimental Flights ATLAS 
– Ground installations: (15 Ha) 

– Main runway: 800m x 18m 

– Auxiliary sand runway: 400m x 15m 

– Control center for mission operations 

– Independent Hangars for different 
customers 

– Logistic and Technical support 

– Segregated air space 

– UAS < 650 Kg MTOW 

– Technology validation Center; avionics 
and other technologies 

– UAS regulation and certification 

– Pilot training center 
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• Segregated Air Space 

– Size: 35 x 30 Km aprox. 

– Altitude: up to 5000 ft 
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Conclusions 

• First steps 

• Better platforms 

• Need of new technologies and methods 

• Validation and experimentation needs 

– ATLAS facility 

• Regulations and safety assurance 
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