

Toward a Unified Approach to the Control of Aerial Vehicles.

T. Hamel, M.-D. Hua, P. Morin, D. Pucci, C. Samson

Thrust-propelled underactuated vehicles

Thrust force along a direction linked to the vehicle's main body

Complete orientation actuation

Examples :

- 1. In the plane (SE(2)): boats, hovercrafts, (blimps, PVTOL)
- In 3D space (SE(3)): submarines, aeroplanes, blimps, rockets, VTOL vehicles (helicopters, Xflyers, Bertin's HoverEye,...)

Objective :

develop the basics of a unified approach to the control of these systems

Nonlinear (vs. linear) control design

- Aerodynamic forces –attitude dependent lift, in particular– taken into account explicitly
- Extended operating domain (flight envelope), from hovering to high-velocity cruising, and possibly large angles of attack
- Application to a large variety of flying devices, including VTOL vehicles, airplanes, and convertible vehicles with transitions from hovering to cruising

Motion equations (Newton-Euler) 1/2

\vec{a}	:	vehicle's center of mass (c.o.m.) longitudinal acceleration
$ec{g}$:	gravity acceleration
$\vec{v}_a = \vec{v} - \vec{v}_{air}$:	vehicle's longitudinal velocity relatively to ambient air
m	:	vehicle's mass
R	:	vehicle's orientation
$\vec{F}_a(\vec{v}_a,R)$:	resultant of aerodynamic forces applied to the vehicle
$ec{k}(R)$:	unit vector opposite to the body-linked thrust force direction
T	:	thrust force intensity

 $\vec{F}_e(\vec{v}_a, R) = \vec{F}_a(\vec{v}_a, R) + m\vec{g}$: resultant of external forces applied to the vehicle

$$m\vec{a}=ec{F_e}-Tec{k}$$
 : longitudinal motion

$$\vec{a} = 0 \Rightarrow T = |\vec{F_e}| \text{ and } \vec{k} = \frac{\vec{F_e}}{|\vec{F_e}|}$$

Motion equations (Newton-Euler) 2/2

- R : rotation matrix between fixed-frame and body-fra
- G: center of mass (c.o.m.)

$$\frac{d}{dt}\vec{OG} = \vec{v} = (\vec{i}\,\vec{j}\,\vec{k})v$$
$$\vec{\omega} = (\vec{i}\,\vec{j}\,\vec{k})\omega$$

 Γ : actuation torque (vector of coordinates in body-fr

 Γ_e : torque produced by external forces

S(.) : skew-symmetric matrix associated w.r.t.

cross product in \mathbb{R}^3 , i.e. $x \times y = S(x)y$

$$\dot{R} = RS(\omega)$$

 $J\dot{\omega} = -S(\omega)J\omega + \Gamma_e + \Gamma$

: rotation motion

For control purposes, minimal parametrizations of orientations (like Euler angles) should be banished. Use rotation matrices or quaternions.

Simplifying assumptions

- 1. The torque produced by \vec{T} is small (control decoupling assumption)
- 2. Γ_e can always be "dominated " by the control torque Γ so that ω can be used as an intermediary control variable (backstepping technique)

(for problems 2 and 3 :)

- 3. \vec{F}_e does not depends on the vehicle's orientation
 - example: the vehicle's shape is a sphere (helicopters)
 - counter-example: airplanes with large planar surfaces producing attack-angle dependent lift forces
- 4. $\|\vec{F}_e(\vec{v}_a, R)\| \le c_1 + c_2 \|\vec{v}_a\|^2$
- 5. $\vec{v}_a \cdot \vec{F}_e(\vec{v}_a, R) \le c_3 \|\vec{v}_a\| c_4 \|\vec{v}_a\|^3$ (passivity property)
- 6. Complete measurement of the vehicle's state (position, orientation, velocities)
- 7. \vec{F}_e is either measured or estimated
- 8. No actuation limitations in sign and amplitude

Thrust direction control • $\vec{\gamma}(t) = (\vec{i} \ \vec{j} \ \vec{k}) \gamma(t) = (\vec{i}_0 \ \vec{j}_0 \ \vec{k}_0) \gamma^{\mathcal{I}}(t)$: unit vector giving the desired thrust direction at time *t* • Objective : exponential stabilization of $\vec{\gamma} - \vec{k} = \vec{0}$ (\Leftrightarrow exp. stab. of $\theta = 0$ with $\cos(\theta) = \gamma_3$)

System :

$$\frac{d}{dt}\vec{k} = \vec{\omega} \times \vec{k}$$

Control :

$$\begin{cases} \omega_1 = -\frac{\beta\gamma_2}{(1+\gamma_3)^2} - \gamma^{\mathcal{I}T} S(Re_1) \dot{\gamma}^{\mathcal{I}} \\ \omega_2 = -\frac{\beta\gamma_1}{(1+\gamma_3)^2} - \gamma^{\mathcal{I}T} S(Re_2) \dot{\gamma}^{\mathcal{I}} \end{cases} \quad \beta > 0, \ e_1 = (1,0,0)^T, \ e_2 = (0,1,0)^T \end{cases}$$

 $\omega_3(t)$ is free and the domain of attraction is $(-\pi,\pi)$.

Velocity control 1/2

- \checkmark \vec{v}_r : desired velocity of G
- $\vec{a}_r = \frac{d}{dt} \vec{v}_r$: desired acceleration
- $\vec{\tilde{v}} := \vec{v} \vec{v}_r : \text{velocity error} = (\vec{i} \ \vec{j} \ \vec{k}) \tilde{v} = (\vec{i}_0 \ \vec{j}_0 \ \vec{k}_0) \tilde{v}^{\mathcal{I}}$ $\vec{\gamma} := \frac{\vec{F}_e}{m} \vec{a}_r \qquad = (\vec{i} \ \vec{j} \ \vec{k}) \gamma = (\vec{i}_0 \ \vec{j}_0 \ \vec{k}_0) \gamma^{\mathcal{I}}$

Error system

$$\frac{d}{dt}\vec{\tilde{v}} = \vec{a} - \vec{a}_r = \vec{\gamma} - \frac{T}{m}\vec{k}$$
$$\frac{d}{dt}\vec{k} = \vec{\omega} \times \vec{k}$$

If $\|\vec{\gamma}\| > \epsilon > 0$, the asymptotic stabilization of $\vec{\tilde{v}} = 0$ is equivalent to the asymptotic stabilization of $(\|\vec{\gamma}\| - \frac{T}{m} = 0, \frac{\vec{\gamma}}{\|\vec{\gamma}\|} - \vec{k} = \vec{0})$

- Existence of "classical" control solutions relies on the satisfaction of this assumption
- Ex: hovering VTOL vehicle ($\vec{v}_r = \vec{a}_r = \vec{0}$), no wind ($\vec{F}_a = \vec{0}$), submitted to gravity $\Rightarrow \vec{F}_e = m\vec{g} \neq \vec{0}$

Counter-ex : Boat at rest ($ec{v}_r=ec{a}_r=ec{0}$), no current + buoyancy $\Rightarrowec{F}_e=ec{0}$

Velocity Control 2/2

Control 1 :

$$\begin{cases} \frac{T}{m} = \gamma_3 + \|\gamma\|\beta_1 \tilde{v}_3 \\ \omega_1 = -\|\gamma\|\beta_2 \tilde{v}_2 - \frac{\beta_3 \frac{\gamma_2}{\|\gamma\|}}{(1 + \frac{\gamma_3}{\|\gamma\|})^2} - \frac{1}{\|\gamma\|^2} \gamma^{\mathcal{I}T} S(Re_1) (\dot{\gamma}^{\mathcal{I}}) & (\beta_{1,2,3} > 0) \\ \omega_2 = \|\gamma\|\beta_2 \tilde{v}_1 - \frac{\beta_3 \frac{\gamma_1}{\|\gamma\|}}{(1 + \frac{\gamma_3}{\|\gamma\|})^2} - \frac{1}{\|\gamma\|^2} \gamma^{\mathcal{I}T} S(Re_2) (\dot{\gamma}^{\mathcal{I}}) \end{cases}$$

Control 2 : with complementary integral action

Same control expression with $ec{\gamma} := rac{ec{F_e}}{m} - ec{a_r} + h(\|I_v\|^2)ec{I_v}$

 $I_v^{\mathcal{I}} = \int_0^t \tilde{v}^{\mathcal{I}}(s) ds + I_0^{\mathcal{I}}$ h (.) : positive function ensuring integral action boundedness

Ex: $h(s) = \frac{\eta}{\sqrt{(1+s)}}$

Position control - Trajectory tracking

<u>Control 1</u> : same as previous velocity control 2, since $\tilde{x}^{\mathcal{I}} = I_v^{\mathcal{I}}$ with $I_0^{\mathcal{I}} = 0$

Control 2: incorporates a position integral term *z*, bounded and endowed with anti-windup properties. Yields same control expression with

$$\gamma := \frac{F_e}{m} - a_r + h(\|\tilde{x}^{\mathcal{I}} + z\|^2)(\tilde{x}^{\mathcal{I}} + z) + \ddot{z}$$

and \tilde{v} replaced by \bar{v}

$$:= \tilde{v} + R^T \dot{z}$$

Robustification adjustments in situations where $\|\gamma\|$ becomes small

When \vec{F}_a depends on the vehicle's orientation 1/2

Case of a vehicle whose shape is symmetric about the thrust axis

$$\vec{F}_a = \vec{F}_D + \vec{F}_L : \text{decomposition into drag and lift forces}$$

(
$$\alpha = \cos^{-1}(-\frac{v_{a,3}}{|v_a|}), \beta = \operatorname{atan2}(v_{a,2}, v_{a,1})$$
) : pair of angles characterizing the direction of \vec{v}_a w.r.t. the vehicle's frame

$$(R_e, M)$$
 : Reynolds and Mach numbers

Combining Buckingham π -theorem and body symmetry yields :

 $\vec{F}_D = -k_a \|\vec{v}_a\| C_D(R_e, M, \alpha) \vec{v}_a$ $\vec{F}_L = k_a \|\vec{v}_a\| C_L(R_e, M, \alpha) \vec{r}(\beta) \times \vec{v}_a$

with (C_D, C_L) : aerodynamic characteristics of the vehicle's body (independent of β)

When \vec{F}_a depends on the vehicle's orientation 2/2

Transformation into the spherical case

lf :

(1) $\forall \alpha : C_D(\alpha) + C_L(\alpha) \cot(\alpha) = C_{D_0}$ (a constant number)

then :

$$egin{array}{rcl} mec{a} &=& ec{F}_a(ec{v}_a,R)+mec{g}-Tec{k} \ &=& ec{F}_{as}(ec{v}_a)+mec{g}-T_sec{k} \end{array}$$

with :

 $\vec{F}_{as}(\vec{v}_a) = -k_a C_{D_0} \|\vec{v}_a\| \vec{v}_a : \text{ independent of } \alpha \text{ (of the body's orientation)}$ $T_s = T + k_a \|\vec{v}_a\|^2 \frac{C_L(\alpha)}{\sin(\alpha)}$

Examples of aerodynamic characteristics satisfying (1)

 $\begin{cases} C_D(\alpha) = c_0 + 2c_1(\sin(\alpha))^2 \\ C_L(\alpha) = c_1\sin(2\alpha) \end{cases} \begin{cases} C_D(\alpha) = \bar{c}_0 \\ C_L(\alpha) = \bar{c}_1\tan(\alpha) \end{cases}$

Characteristics of an ellipsoidal body (Keyes, 1965)

Characteristics of a missile (Saffel, Howard, Brooks, 1971)

Simulations

Spherical case (no aerodynamic lift, drag independent of vehicle's orientation)

Annular wing (aerodynamic lift, symmetry about thrust direction)

Perspectives

case of symmetry-breaking flat wings (common airplanes), and relation with slide-slip angle zeroing via roll (ailerons) monitoring

stall phenomenon (modeling, consequences, avoidance)

- actuation specialization (and associated limitations)
- measurement, estimation, multisensory fusion issues

convergence with classical (linear) control approach and solutions

etc.