Estimation of the distance from a surface based on local optic flow divergence

Lucia BERGANTIN, Thibaut RAHARIJAONA, Franck RUFFIER

lucia.bergantin@univ-amu.fr

Aix $*$ Marseille université

Overview

- Introduction

$>$ The problem of distance/height estimation
$>$ Self-oscillations in honeybees

- Computation of the optic flow divergence
$>$ Local OF divergence measurement
- The test bench
$>$ The model of the test bench
- Results
> Distance estimation: bright \& low illuminance
- Conclusions \& Future work

The problem of
 distance/height estimation

Navigating in an unknown environment

\rightarrow Importance of accurate visual distance estimation with minimalistic equipement

Previous studies:

- Stereovision [Moore et al. (2009)]
- Monocular vision for depth perception [Saxena et al. (2007)]
- Optic flow (OF) cues [Serres et al. (2017), Ho et al. (2017)]

Images taken from a stereo pair of cameras, and the depthmap calculated by a stereo system [Saxena et al. (2007)].

Flow deck V2 by Bitcraze [5]

Self-oscillations in honeybees

OF divergence: pattern of contractions and expansions in the OF vector field

$$
\begin{equation*}
\omega_{D I V}^{t h}=\frac{v_{h}}{h} \tag{1}
\end{equation*}
$$

used to observe the state vector of the oscillating system

$$
\begin{equation*}
X=\left[h ; v_{h}\right] \tag{2}
\end{equation*}
$$

A

Vertical tunnel (Portelli et al, 2011)

Self-oscillations observed in honeybees in horizontal (A) and vertical (B) tunnels.

Computation of the OF divergence

The OF divergence can be computed as the subtraction between the magnitudes measured by two OF sensors.

$$
\begin{equation*}
\omega_{D I V}^{\text {meas }}=\omega(\phi)-\omega(-\phi) \tag{3}
\end{equation*}
$$

Bergantin, L., Raharijaona, T. and Ruffier F. .«Estimation of the distance from a moving surface based on local optic flow divergence», 2021 IEEE International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2021

Local OF divergence measurement

$$
\omega(\phi)=\frac{||\vec{V}||}{D} \sin \left(\widehat{\vec{D}, \vec{V}) \quad(4) \longrightarrow} \begin{array}{rl}
\omega(\phi) & =\frac{\sqrt{v_{x}^{2}+v_{h}^{2}}}{D} \sin \left(\frac{\pi}{2}-\phi+\alpha\right) \\
\omega(\phi) & =\frac{v_{x}}{D} \sin \left(\frac{\mathbb{Z}}{2}-\phi\right)+\frac{v_{h}}{D} \sin (\phi) \\
\omega(-\phi) & =\frac{v_{x}}{D} \sin \left(\frac{\pi}{2}-\phi\right)-\frac{v_{h}}{D} \sin (\phi) \tag{7}
\end{array}\right.
$$

Using (6) and (7), (3) can be expressed as:

$$
\begin{equation*}
\omega(\phi)-\omega(-\phi)=2 \frac{v_{h}}{D} \sin (\phi) \tag{8}
\end{equation*}
$$

Since $D=h \cos (\phi)$:

$$
\begin{gather*}
\omega(\phi)-\omega(-\phi)=2 \frac{v_{h}}{h} \sin (\phi) \cos (\phi) \tag{9}\\
\omega(\phi)-\omega(-\phi)=\frac{v_{h}}{h} \sin (2 \phi) \tag{10}
\end{gather*}
$$

The test bench

The model:

$$
\begin{align*}
& \xrightarrow{\Omega[\mathrm{rad} / \mathrm{s}]} \sqrt[\begin{array}{c}
\text { Slider } \\
\text { dynamics }
\end{array}]{\mathrm{V}_{\Omega}[\mathrm{rad} / \mathrm{s}]} \rightarrow \stackrel{\mathrm{R}}{ } \xrightarrow{\mathrm{~V}_{\mathrm{h}}[\mathrm{~m} / \mathrm{s}]} \sqrt{\mathrm{R}[\mathrm{~m}]} \\
& \left\{\begin{array}{c}
\dot{X}=A \cdot X+B \cdot u=\left[\begin{array}{cc}
0 & 1 \\
0 & -54.27
\end{array}\right] X+\left[\begin{array}{c}
0 \\
0.3498
\end{array}\right] u \\
Y=C \cdot X+D \cdot u=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] X
\end{array}\right. \tag{11}
\end{align*}
$$

Non-linear measurement equation

$$
\begin{equation*}
Y=\omega_{D I V}=\frac{v_{h}}{h} \tag{12}
\end{equation*}
$$

\rightarrow use of an Extended Kalman Filter (EKF)

Distance estimation: bright illuminance

Average error values computed after convergence (3s): $0.31 \%, 12.09 \%, 3.29 \%$ and 8.29%. International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2021

Distance estimation: low illuminance

Average error values computed after convergence (3s): 4.49\%, 15.73\%, 12.03\% and 5.41\%. International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2021

Conclusions \& Future work

- Reliability of the computation of the OF divergence as the subtraction of two OF magnitudes
- Reliability of the distance estimation performed with OF divergence computed
- Interesting for flying robotic applications
- Future work:
$>$ To estimate larger distance with larger ϕ angle
$>$ To sense optic flow with wider optical aperture lenses

Draco-R UVIFY [8]
$>$ To test this method on a flying robot in front of a surface

Thank you for your attention ;)

lucia.bergantin@univ-amu.fr LinkedIn: Lucia Bergantin

Aix $*$ Marseille université

References

[1] Richard JD Moore et al. "A stereo vision system for uav guidance". In:2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2009,pp. 3386-3391.
[2] Ashutosh Saxena, Jamie Schulte, Andrew Y Ng, et al. "Depth Estimation Using Monocular and Stereo Cues." In: IJCAI. Vol. 7. 2007, pp. 2197-2203.
[3] Julien R Serres and Franck Ruffier. "Optic flow-based collision-free strategies: From insects to robots". In: Arthropod structure \& development46.5 (2017), pp. 703-717.
[4] Hann Woei Ho, Guido CHE de Croon, and Qiping Chu. "Distance and velocity estimation using optical flow from a monocular camera". In: International Journal of Micro Air Vehicles 9.3 (2017), pp. 198-208.
[5] https://www.bitcraze.io/products/flow-deck-v2/
[6] Kirchner, W. \& Srinivasan, M. "Freely flying honeybees use image motion to estimate object distance". In: Naturwissenschaften, 76(6), 1989, pp. 281-282.
[7] Portelli, G., Ruffier, F., Roubieu, F. L. \& Franceschini, N. 2011 "Honeybees' speed depends on dorsal as well aslateral, ventral and frontal optic flows ". In: PloS one, 6(5), e19 486.
[8] https://hexadrone.fr/autres-marques/2205-drone-draco-r-uvify.html

