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Objectives

Objectives

I Extend previous work with a more complete version [1]

I Define a NMPC framework for generic UAVs

I Use motor-torque level controls

I Include actuation and perception constraints

[1] Jacquet et al., “Perception-constrained and Motor-level Nonlinear MPC for both Underactuated
and Tilted-propeller UAVs.”
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Motivations

Motivations

I Handle motion tasks with critical perception objectives

I Maintain visibility over a set of markers for localization

I Track a mobile phenomenon with maximum time coverage

I Maintain safety distance with the environment
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Part I: System modeling



Generically Tilted Multi Rotor

System modeling / UAV modeling
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UAV modeling

System state

xbody = [p>q>v>ω>]> ∈ R3 × S3 × R3 × R3, (1a)

xactuators = γ, with γ = [f1...fn]>, (1b)

System input

γ̇ = u, (2)

The forces γ and their derivatives γ̇ are linked to the rotors’ speeds and accelerations
doing a change of coordinates [2]

[2] Bicego et al., “Nonlinear model predictive control with enhanced actuator model for multi-rotor
aerial vehicles with generic designs.”
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Kinematic and Dynamic equations

ṗ = v (3a)

q̇ =
1

2

[
0
ω

]
⊗ q (3b)[

v̇
ω̇

]
=
[
mI3 O3
O3 J

]−1 ([ −mgzW
−ω×Jω

]
+
[
q ⊗ Gf γ ⊗ q∗

Gτγ

])
(3c)

with Gf and Gτ ∈ R3×n respectively being the force and torque allocation matrices [3]

[3] Michieletto et al., “Fundamental Actuation Properties of Multirotors: Force-Moment Decoupling
and Fail-Safe Robustness.”
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Actuation constraints

Realistic actuation constraints

γ ≤ xa ≤ γ (4a)

γ̇(γ) ≤ u ≤ γ̇(γ) (4b)

Where γ̇(γ) and γ̇(γ) are known through an identification campaign [2]

[2] Bicego et al., “Nonlinear model predictive control with enhanced actuator model for multi-rotor
aerial vehicles with generic designs.”

System modeling / Constraints
9/22



Field of View constraints

αh

zS

1

M = [xM yM zM ]>
xS

tan−1| xMzM |

OS

Decoupled vertical and horizontal FOV constraints:

|xM/zM | ≤ tan
αh

2
, |yM/zM | ≤ tan

αv

2
. (5)
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Feature tracking objective

zS

1

M

OS

β

cosβ

Minimization of the angular distance between the feature and the sensor principal
axis [4]

[4] Penin et al., “Vision-Based Reactive Planning for Aggressive Target Tracking While Avoiding
Collisions and Occlusions.”
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Optimal control problem

min
x0...xN

u0...uN−1

N∑
k=0

‖yk − yr ,k‖2
Q (6a)

s.t. x0 = x(t) (6b)

xk+1 = f(xk ,uk), k∈{0,N−1} (6c)

yk = h(xk ,uk ,pMk
), k∈{0,N} (6d)

γ ≤ γk ≤ γ, k∈{0,N} (6e)

γ̇
k
≤ uk ≤ γ̇k , k∈{0,N−1} (6f)

|xM/zM |k ≤ tanαh, k∈{0,N} (6g)

|yM/zM |k ≤ tanαv , k∈{0,N} (6h)

with the objective vector y = [p> q> ṗ> ω> p̈> ω̇> cosβ ˙cosβ]>
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Feature detection uncertainty estimation

Compute the feature position covariance ΣM from the pixel covariance
Σc = σ2I8, σ ∈ R+ of the 4 corners, using a 1st order approximation scheme [5]

ΣM = σ2(J>MJM)−1 (7)

JM ∈ R8×6 is computed for each corner using the chain rule

[5] Fourmy et al., “Absolute humanoid localization and mapping based on IMU Lie group and fiducial
markers.”
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Part II: Results



Software diagram

Open-source implementation available online: https://redmine.laas.fr/projects/perceptive-torque-nmpc
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Hardware platform
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Experiments

See video
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Conclusion

Achievements

I Onboard NMPC implementation for several types of UAVs

I Actuation and perception realistic limitations

I Open source implementation

I Extended non-linear model using quaternions

I Uncertainty estimation of the feature 3D-pose from the camera measurements

Future works

I Extension to multi-robot systems

I NMPC failure handling, e.g. when constraints are not feasible

I Visual-Inertial state estimation

I Replace fiducial markers with object detection algorithms
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