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Aerial robots 

An aerial robot is an unpiloted aerial vehicle equipped 
with sensors that enable it to understand and adapt 
to changes in its surrounding conditions

 According to this definition, many existing unmanned 
aerial vehicles (UAVs) are not aerial robots. 
 Pre-programmed tracking of GPS way points does not 

allow for adapting to changing local environment.
 Aerial robots require exteroreceptive sensor systems 

capable of providing local information for complex 
3D-environments.
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(my definition)



Typical low-cost UAV sensor suite
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Proprioceptive sensors 
Inertial Measurement Unit
• Accelerometers
• Gyrometers
• Magnetometers

Global positing system (GPS)
(for outdoors applications)

Extereoreceptive Sensors
Vision
Laser – IR range
Structured light

Physical noise isolation 
plus suitable analogue 
and digital post filtering.

Avionics stack from ANU X4-flyer



Vision for aerial vehicles

 Vision systems are light (as little as a few grams) 
 Vision is passive requiring low power and producing no 

signature emissions.
 Vision sensors are one of the most information rich  

exteroreceptive sensors that exist.  
 Vision sensors provide so much information that it is possible 

(in principle) to understand complex 3D-environments using 
vision alone (structure from motion)

Caveat: Effective post processing of vision requires significant 
computational resources.  
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Classical approach to control

Classical control theory provides a standard approach 
to regulation problems:

1. Model the dynamics of the system. 
 Represent the dynamics in terms of a minimal state. 

2. Represent the task in terms of a state error.
3. Design a control algorithm to drive the state error to 

zero.
4. Measure as much as you can. 
5. Estimate the system state on-line.
6. Input the state estimate into the control algorithm to 

close the loop.
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Conceptual framework of state-based control

REAL WORLD

State estimates

ObservationsSensors
The mapping from 
observation to state 
estimate is 
•non-linear
•over-determined
•ill-conditioned

Task error

Task error is often naturally  
conditioned relative to 
proximity to environment!

Easy to represent in terms of 
sensor measurements.

Computing a state estimate from the 
observations requires:
• Model of the environment (SLAM)
• Model of the system dynamics
Estimates tends to be ill-conditioned when the 
vehicle is distant from local features.

(ξ, v, R,Ω)

Control
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Sensor based control 

Sensor based control is a paradigm that is only subtly 
different from the classical approach.

1. Model the dynamics of the system
 Use this model to determine the dynamic response of the 

sensor signals based on general structure assumptions about 
the environment. 

2. Represent the task in terms of a sensor error
3. Design a control algorithm to drive the sensor error to 

zero based on analysis of the sensor and system 
dynamics

4. Input the sensor measurements into the control 
algorithm to close the loop.
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Conceptual framework for sensor based control

REAL WORLD ObservationsSensors

Sensor based 
task error The goal of sensor based control is to remove the 

state estimation module required for a classical 
systems and control approach. 

It is particularly effective in situations in which 
state estimation is difficult or ill posed, and 
the task can be directly represented in terms 
of measurements. 

Sensor based control
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Dynamic image based visual servo control 
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Target points

Camera fixed to 
vehicle

Extract a set of point features 
from the observed image in real 
time.



Recap classical image based visual servo control
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Image points si, desired image points s
∗
i , image error s

∗
i , leading

to image kinematics

ṡ = L(si, zi, q)q̇, q̇ = −L†(si, zi, q)(si − s∗i )

Extending to image dynamics appears hopeless

¨̃s =
d

dt
L(s,zi, q) ˙̃q+ L(s,zi, q)¨̃q

There are two reasons for this difficulty

• The image coordinates have not been given any physical
interpretation.

• Classical image based visual servo control is based on lin-
earising control design.



A port Hamiltonian dynamic systems model approach
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Consider a classical Euler–Lagrange dynamical system with 
generalised coordinates q

The Hamiltonian associated with this is  

The power bond is 



Image features 

Initially we consider each image feature si as a 
modular bond interconnection 
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Thus, each image feature 
si will result in a separate  
bond attached to the 
system 1-junction 
coupling separate effort 
variables τi to the 
Hamiltonian dynamics

S1

Si

Sn



Modulated Transformer
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Image bond
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ṡi = Li(si, zi, q)q̇ Modulated transformer



Image Hamiltonian
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Full modular dynamic IBVS
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Compensate for the internal potential of the 
Hamiltonian H0

Image Hamiltonian used to shape 
potential for desired regulation point. 

Add damping to 
obtain stable 
response. 

System dynamics



Closed-loop response

System dynamics of closed-loop system is

M(q)q̈ = −C(q, q̇)q̇−
nX
i=1

τi−δ = −C(q, q̇)q̇−
nX
i=1

kiL
>
i (si, zi, q)(si−s∗i )−Rq̇

Total energy of closed-loop system

H(q, p, si) = H0(q, p) +

nX
i=1

Hi(si) − U(q)

=
1

2
p>M−1(q)p +

1

2

nX
i=1

ki||si − s∗i ||2

Energy evolution

d

dt
H(q, p, si) = −hδ q̇i = −q̇>Rq̇.
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Straightforward to 
prove stability.

Note that the image 
Jacobian is not inverted!

Gain tuning is important to 
get desirable transients
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Vision based Landing and obstacle avoidance

Two key tasks that are necessary for 
autonomous operation of aerial robots are

•Obstacle avoidance 
•Close approach to objects and landing
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Bio-mimetic systems

A key insight that can be used in developing a motion cue for 
such a task comes from the study of biological systems.

Optical flow field  of textured 
surface under direct approach

A honey bee regulates its thrust in landing approach in 
proportion to a measure of  divergence of the observed 
optic flow (Srinivasan et al. 2000)



Optical flow
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Optic flow motion damping 
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Vehicle dynamics

Translational component

Angular component



Landing on a moving platform
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Optic flow is an visual cue that can be used 
with great effect for the control of aerial 
robotic vehicles. 

Optical divergence 
is proportional of 
vertical velocity 
over distance.



Experimental results
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Dealing with unmeasured signals in dynamic IBVS
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• The Jacobian matrix Li(q, si, zi) in an Image based visual servo
scheme depends on the depth zi of the image point with respect to the
camera.

• The depth zi are not directly measured due to the projective nature
of imaging devices.

• The simplest work around to this issue is to use approximations
(ẑ1, . . . , ẑn) to the depth and compute an estimate L̂ := L(q, s, ẑ1, . . . , ẑn)
of the true Jacobian matrix.

• This has been found to be very effective in practice and IBVS is
known to be highly robust to false estimation in depth.

• Nevertheless,it is of interest to develop a more detailed analysis
using the port Hamiltonian framework.

ṡi = Li(si, zi, q)q̇τi = L
>
i (si, zi, q)ei



Bond graph for dynIBVS with depth estimation
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Split velocity components of optic flow 

Mechanical 
system 
dynamics

Optic flow 
recombined into 
a single image 
storage

estimator 
for z

Storage for 
estimation 
error

β :=
(z − ẑ)
ẑ

∂Him
∂s

˙̂z = Vz +
1

γẑ
(s− s∗)>KṡV

z̃2



dynIBVS with depth and velocity estimation 
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Add damping into the image 
branch rather than directly on 
generalized variables of 
mechanical system

A new energy store 
compensates for 
unknown  ż



Conclusions

 Vision provides a rich and practical sensor 
modality for control of aerial vehicles

 To obtain high performance control of aerial 
vehicles, it is necessary to consider the dynamics 
of the vehicle. 

 Existing results are all preliminary, particularly in 
the sense that existing lightweight, low-power 
vision processing technology is not well developed.
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There are many opportunities for significant 
contribution remaining in this field.
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