

A SMOOTH-TURN MOBILITY MODEL FOR AIRBORNE NETWORKS

Yan Wan, Kamesh Namuduri, Yi Zhou Dayin He, and Shengli Fu

> **Electrical Engineering** University of North Texas

> > 10/25/2012

Motivation

- Model Description
- Model Properties
- Randomness
- Conclusions

Motivation: Need for AN Mobility Models

Need for mobility models for airborne networks
 ``Edge effect" in ANs

Philosophy

- Routing protocol design should take into account the knowledge of the dynamic structure of ANs.
- Mobility model captures the random movement patterns of nodes.
- Mobility model serves as the fundamental mathematical framework for network connectivity analysis, network performance evaluation, and eventually the design of reliable routing protocols.

<section-header>

Fail to capture "smooth trajectory" of airborne vehicles

 Tend to maintain the same heading speed
 Change direction through making large turns
 Mechanical and aero-dynamical constraints

 The correlation along temporal and spatial dimensions created by the smooth trajectory can be useful to design routing protocols.

Motivation: Our Aim

Aim

- Construct realistic AN mobility models that capture the features unique to ANs, yet simple and tractable enough to serve as analytical frameworks for connectivity analysis.
 - Capture the smooth-turn behavior
 - Take into account the correlation in acceleration along spatial and temporal dimensions caused by physical laws

Network

- Connectivity properties of the model
 - Node distribution
 - Number of neighbors, etc.
- A comprehensive investigation of AN mobility models

b

- Classification according to applications
- Classification according to randomness levels
- Quantifying randomness

Model: Description

Idea of the Model

- Select a point perpendicular to its heading direction and circle around it -> smooth trajectory
- Inverse length of the circling radius to be Gaussian distributed

 -> straight trajectories and slight turns are preferable
- Model Details

$$a_t(t) = 0$$

$$a_n(t) = \frac{V^2}{r(T_i)}$$

$$\dot{\Phi}(t) = -w(t) = -\frac{V}{r(T_i)}$$

$$\dot{l_x}(t) = v_x(t) = V\cos(\Phi(t))$$
$$\dot{l_y}(t) = v_y(t) = V\sin(\Phi(t))$$

NetWork

Wrap-around and reflection boundary models

Properties: Node Distribution

Theorem 1: initial distribution is uniform

NetWork

THEOREM 1. N airborne vehicles move independently in the space $[0, L) \times [0, W)$ according to the ST mobility model associated with wrap-around boundary model. If the initial locations of these vehicles are uniformly distributed in $[0, L] \times [0, W]$, and the heading angles are also initially uniformly distributed in $[0, 2\pi)$, then the node locations and heading angles remain uniformly distributed at all times t > 0.

Theorem 2: arbitrary initial distribution

THEOREM 2. N airborne vehicles move independently in the space $[0, L] \times [0, W]$ according to the ST mobility model associated with wrap-around boundary model. Assuming that λ is finite and $\sigma \neq 0$, the distributions of node locations and heading angles are uniform in $[0, L) \times [0, W)$ and $[0, 2\pi)$, respectively, in the limit of large time, regardless of the distribution at the initial time.

The results resemble those of the RD model.

Rectangular regions

Wrap-around

Mirror

Network

8

Properties: Connectivity

Uniform distribution of node locations facilitates tractable network connectivity analysis

- For individual nodes
 - Expected number of neighbors
 - Probability of the number of neighbors

$$M = m) = \frac{e^{-E(M)}E(M)}{m!}$$

At a network level

P(I

• P(connected) <= $P(No \ isolated \ Node) = (1 - P(M = 0))^n$

Network

 $E(M) = \frac{\pi N d^2}{\Lambda}$

$$P(k-connected) \leq (1 - P(M \leq k - 1))^n$$

■ In a circular region with boundary, if the transmission range is $\sqrt{\frac{\log n+c(n)}{n\pi}}$, then P(connected)→1 as n→infty, iff c(n)→ infty

9

Randomness: Comparison

Randomness for RD and ST models

- **RD:** $-(1 \lambda \Delta t)ln(1 \lambda \Delta t) \lambda \Delta t ln \frac{\lambda \Delta t}{2\pi}$
- **ST:** $-(1 \lambda \Delta t)ln(1 \lambda \Delta t) \lambda \Delta t ln \frac{\lambda \Delta t}{\sqrt{2\pi e\sigma}}$

Comparison of AN models

Mobility models	Application	Randomness
Flight plan (FP)	Cargo and Commercial	Low
Semi-Circular Random Mobility (SCRM)	Search and rescue	Medium
Smooth-Turn (ST)	Patrolling	High

11

Network

Conclusions: Summary

Contributions

A novel AN mobility model that captures smooth turns

Network

- Stationary analysis and preliminary connectivity analysis of the model
- An entropy measure that characterizes the randomness of mobility models
- Classification and comparison of different types of AN mobility models

12

- Future Works
 - Enhance the basic model
 - Further connectivity studies
 - Use of randomness in routing design

Conclusions: Model Enhancement

Enhance the model parameters

- Varying speed
- 3-D movement
- Realistic range of turning radius
- Collision Avoidance
 - Easy to extend because of the incorporation of physical laws
- RWP-like Smooth-turn Mobility Models
 - Randomly select a center uniformly distributed in the space
 - Randomly select a destination uniformly distributed in the space

13

Network

Model: Further Discussion

Impact of parameters on the mobility model

- Heading speed: constant
- Mean duration: how frequently is the change of direction
- Variance of Gaussian variable: preference between straight trajectory versus turns.

Network

