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Relationship between body-frame force/moments and 
propeller forces:



Attitude Stabilization and Position Control
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T. Lee, M. Leok, and N. H. McClamroch. Geometric tracking control of a 
quadrotor UAV on SE(3). In Proc. of the IEEE Conf. on Decision and Control, 
Atlanta, GA, Dec. 2010.

Attitude stabilization and position control follows approach 
proposed in:

N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The GRASP multiple micro 
UAV testbed. IEEE Robot. Autom. Mag., 17(3):56–65, Sept. 2010.
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Define desired force and moments:

with error terms:
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Basin of attraction includes full space of rotation matrices 
excluding full inversion

T. Lee. Geometric tracking control of the attitude dynamics of a rigid body on 
SO(3). In Proc. of the Amer. Control Conf., San Francisco, CA, Apr. 2011.
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Perching Maneuver

Approach problem as a composition of controllers



Controllers

N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The GRASP multiple micro UAV 
testbed. IEEE Robot. Autom. Mag., 17(3):56–65, Sept. 2010.

1. Attitude Controller
2. Hover Controller
3. 3D Trajectory Controller
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Based on PD or PID control and linearization about hover

Three basic primitives:
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time in ms

Implementation
Position and yaw 
control in Matlab 

(~100 Hz)

Attitude 
stabilization

onboard (1 kHz)

Much of the source code is open-source:

Characterization of latencies:

http://github.com/nmichael

http://github.com/nmichael
http://github.com/nmichael
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Formation Definition
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Leader-follower approach

• Leader (possibly virtual) designs trajectories using previous methods
• Followers design trajectories based on neighbor states and desired 

formation shape vectors:
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Defines desired relative
positions and bearings



Capturing Communication and Perception
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Formation Control
Define the error between the desired and current system state:
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From the definition of piecewise-smooth polynomial trajectories:

Wish to minimize this error across the time horizon:

minimize

Z th
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ei(t)Tei(t)dt
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subject to constraints on x(tc), . . . , x
(k)

(tc)

weighting factor
Define the optimization program:

current time

• Cast as QP and solve for local trajectory
• Solve in real-time based on neighboring robots’ trajectories 

and local knowledge
• Piecewise-smooth polynomial trajectory is analytic - access 

to derivatives

Controller is fully decentralized
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Statistical models

Additional Formation Definitions

N. Michael and V. Kumar. Control of ensembles of aerial robots. Proc. of the IEEE, 99(9):1587–
1602, Sept. 2011.
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L. C. A. Pimenta, G. A. S. Pereira, M. M. Goncalves, N. Michael, M. Turpin, and V. Kumar. 
Decentralized controllers for perimeter surveillance with aerial robots. Adv. Robot., Sept. 2012. 
Submitted.
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• Iterative closest point (laser) for 2D 
position, yaw

• IMU for roll, pitch
• IMU+laser for z altitude

Pose Estimate:

• Align incoming laser scans against the 
existing map

• Assumes 2.5D environment
• Detect stable floor transitions

Incremental SLAM:

• Vision-based (SURF) features
• Bag-of-words methods
• Optimize pose graph using IEKF

Loop-Closure:



Simplify graph by contracting closed loops 
to avoid repeated optimizations

Does not improve accuracy of maps in previously 
traversed regions if already closed
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• IMU for roll, pitch
• IMU+laser for z altitude

Pose Estimate:

• Align incoming laser scans against the 
existing map

• Assumes 2.5D environment
• Detect stable floor transitions

Incremental SLAM:

• Vision-based (SURF) features
• Bag-of-words methods
• Optimize pose graph using IEKF

Loop-Closure:

• Smooth delayed output from SLAM 
with more recent IMU/pose 
information

• Increase rate for feedback control

Fusion for Control:
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Planner:
• Sampling-based methods (RRT)

• When RRT fails to find a solution (after timeout), system switches to A*

• RRT typically fails when flying through closed or dense environments
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Estimating Unmodeled Aerodynamic 
Effects and External Forces

IMU calibration and propeller model:
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Seek proportional term in model:

Force from each prop Prop speed (RPM)



Estimating Unmodeled Aerodynamic 
Effects and External Forces

IMU calibration and propeller model:
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After establishing calibration and system parameters, run the 
estimator on the external force directly

• IMU parameters are generally consistent on the same 
platform but differ between platforms

• Force model changes between runs due to propeller wear 
and tear

• Online calibration and force compensation is required for 
flight in confined spaces

Remarks:
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Heterogenous Mapping of an 
Earthquake-Damaged Building via 

Ground and Aerial Robots

N. Michael et al. Collaborative mapping of an earthquake damaged building via ground and aerial 
robots. In Proc. of the Intl. Conf. on Field and Service Robot., Matsushima, Japan, July 2012.

N. Michael et al. Collaborative mapping of an earthquake-damaged building via ground and aerial 
robots. J. Field Robot., 29(5):832–841, Sept. 2012.



Goals
• Construct maps of an 

earthquake-damaged building
• Leverage distinct ground and 

aerial robot capabilities
• Allow a remote human 

operator to directly interact 
with the robots

• Use autonomy to enable safe 
operation and reduce burden 
on operator

Location and Dates
Tohoku University

Sendai, Japan
July 29 - Aug. 1
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Capability Comparison
Ground Robots Aerial Robot

• Increased payload capacity:
• Long mission durations
• Can carry sensing, computation, 

and additional payload
• Statically stable and able to 

support tethered communication
• Limited by terrain traversability

• Decreased payload capacity:
• Short mission durations
• Limited onboard sensing and 

computation
• Stable flight requires closed-

loop feedback control
• Maneuverable in 3D



Experiment Design
Phase 1:

Deploy a tele-operated ground robot (Kenaf) 
equipped with an onboard 3D laser scanner to 
generate a 3D map of the environment and identify 
locations inaccessible to the ground robot

Phase 2:
• Deploy a tele-operated ground robot (Quince) that 

carries an aerial robot (Pelican) to the inaccessible 
regions to complete the map
• Aerial robot autonomously takes-off and lands on 

an automated landing pad



Phase 1



Phase 2



Robot Platforms
Kenaf

• Tracked ground platform
• Onboard sensing:
• Rotating/panning laser scanner 
• 40 Hz scan with a 0.2 Hz cycle time
• Odometry
• IMU

Resulting body-frame registered 
3D point cloud



Quince

Robot Platforms

• Tracked ground platform
• Provides odometry information
• Equipped with aerial robot landing pad 

Landing pad secures the aerial robot during 
the traversal of hallways and stairwells



Pelican

Robot Platforms

• Quadrotor platform
• Onboard sensing: 
• Laser
• IMU
• Kinect
• Limited onboard processing

Vehicle generates 3D voxel-grid based 
map of the environment; localizes, 
plans, and controls with respect to the 
map



Robot Platforms
Quince/Pelican Landing Pad

Designed by Yash Mulgaonkar (Univ. of Penn.)

Dense foam inserts

Guidance rails

Linear actuator with serial interface
ABS plastic
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Methodology
This work builds upon several previous results:



Methodology
Kenaf

• Compute local incremental motion observed by 3D laser data via ICP
• 3D ICP can converge to poor alignment solutions

• On level terrain: ICP is based on 2D (fixed height) observations
• On mixed terrain: Full 3D ICP

• Orientation error corrected based on IMU observations
• Graph-based SLAM formulation with consistency optimization



Methodology
Pelican
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Requires state estimation, mapping, and closed-loop control



Methodology
Autonomous Landing and Takeoff

• Operator requests takeoff
• Pelican and landing pad communicates via 802.15.4
• Vehicle navigates to a fixed height above the landing pad

• Operator requests landing
• Pelican navigates to above the starting position (open-loop)
• Attempts to land, detects success or failure, and recovers if 

necessary



Methodology
Autonomous Landing and Takeoff

Performance repeatability



Methodology
Operator Input

• Kenaf and Quince robots are tele-operated 
• Pelican responds to two types of input:
• Point-model velocity control (position and heading)
• Waypoint control where operator clicks on points in the map and 

vehicle plans and controls to the location

Implementation Notes
• Kenaf maps are generated off-line
• Kenaf and Quince communicate with operator via 802.11
• Pelican communicates with operator via 802.11 (with AP on Quince)
• Pelican batteries are manually replaced during experimentation

Tethered 
communication 

is possible

Autonomous recharging is possible





Methodology
Merging Observations and Maps Across Platforms

Kenaf Laser Scans 
and Odometry

SLAM

Pelican Map 
and Trajectory Quince Odometry

Map Merging Pose Graph
Optimization

User Input
Constraints

Global Map 
and Trajectory 
Registration



Kenaf Laser Scans 
and Odometry

SLAM

Pelican Map 
and Trajectory Quince Odometry

Map Merging Pose Graph
Optimization

User Input
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Global Map 
and Trajectory 
Registration



Quince odometry

Kenaf Path Pelican Path

Kenaf Laser Scans 
and Odometry

SLAM

Pelican Map 
and Trajectory Quince Odometry

Map Merging Pose Graph
Optimization

User Input
Constraints

Global Map 
and Trajectory 
Registration

Landing pad
constraints

User input
constraints
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Future Research Challenges

Intermittent connectivity

Networking delays in
cooperative planning and control



Future Research Challenges

Mapping, planning, and control in vision-based representations 



Future Research Challenges

Cooperative mapping and exploration 
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